The Naval Medical Research Unit Dayton (NAMRU-D) at Wright-Patterson Air Force Base, Ohio, in conjunction with the U.S. Air Force, studied ototoxic effects of JP-8 in rats. NAMRU-D used a multi-chamber whole body exposure facility for up to 96 test animals and 32 control animals at different exposure levels. The objective was to design a noise delivery system that could provide a white noise source one octave band wide, centered at 8 kHz frequency, delivered from outside the exposure chambers. Sound pressure levels were required to be within ±2 dB at all exposure points within each chamber and within ±2 dB over a 6-h run. Electrodynamic shakers were used to produce input noise in exposure chambers by inducing vibration in chamber plenums. Distribution of sound pressure levels across exposure points was controlled within a ±1.5dB prediction interval (α = 0.05) or better. Stability at a central reference point was controlled over 6-h runs within a ±1 dB prediction interval (α = 0.05) or better. The final system allowed NAMRU-D to deliver noise and whole-body aerosol exposures to multiple animals at different levels simultaneously and study the effects that ototoxins may have on hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4935392 | DOI Listing |
Bioconjug Chem
January 2025
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.
Introduction: This paper describes a method to improve gantry-dependent beam steering for Elekta traveling wave linear accelerators by applying the measured and filtered beam servo corrections to the existing lookup table (LUT). Beam steering has a direct influence on the treatment accuracy by affecting the beam symmetry and position. The presented method provides an improved LUT with respect to the default Elekta method to reduce treatment delivery interruptions.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Sci Robot
December 2024
Department of Physics, University of Konstanz, Universitaetsstrasse 10, Konstanz, 78464, Germany.
Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
Over the past few years, significant progress has been made in DNA origami technology due to the unrivaled self-assembly properties of DNA molecules. As a highly programmable, addressable, and biocompatible nanomaterial, DNA origami has found widespread applications in biomedicine, such as cell scaffold construction, antimicrobial drug delivery, and supramolecular enzyme assembly. To expand the scope of DNA origami application scenarios, researchers have developed DNA origami structures capable of actively identifying and quantitatively reporting targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!