A variety of signals finely tune insulin secretion by pancreatic β cells to prevent both hyper-and hypoglycemic states. Here, we show that post-translational regulation of the transcription factors ETV1, ETV4, and ETV5 by the ubiquitin ligase COP1 (also called RFWD2) in β cells is critical for insulin secretion. Mice lacking COP1 in β cells developed diabetes due to insulin granule docking defects that were fully rescued by genetic deletion of Etv1, Etv4, and Etv5. Genes regulated by ETV1, ETV4, or ETV5 in the absence of mouse COP1 were enriched in human diabetes-associated genes, suggesting that they also influence human β-cell pathophysiology. In normal β cells, ETV4 was stabilized upon membrane depolarization and limited insulin secretion under hyperglycemic conditions. Collectively, our data reveal that ETVs negatively regulate insulin secretion for the maintenance of normoglycemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2015.10.076DOI Listing

Publication Analysis

Top Keywords

insulin secretion
20
etv1 etv4
12
etv4 etv5
12
ubiquitin ligase
8
ligase cop1
8
secretion
5
insulin
5
β-cell insulin
4
secretion requires
4
requires ubiquitin
4

Similar Publications

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

Purpose: Imeglimin is a novel oral antidiabetic agent that improves glucose tolerance. This study aimed to investigate the efficacy of combining imeglimin with dipeptidyl peptidase-4 inhibitor (DPP-4i), the most frequently prescribed first-line treatment for patients with type 2 diabetes (T2D) in Japan, to improve glycemic control.

Patients And Methods: Eleven patients with T2D treated with DPP-4i alone (6.

View Article and Find Full Text PDF

Effect of insulin sensitivity, insulin secretion, and beta cell function on the remission of type 2 diabetes: A post hoc analysis of the IDEATE trial.

Diabetes Obes Metab

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Aims: To compare the probability of achieving diabetes remission in individuals with different phenotypes of insulin sensitivity, insulin secretion, and beta cell function and further detect the effects of diet, exercise, and lifestyle education intervention on these indexes.

Methods: Three-hundred and one participants who had glycated haemoglobin (HbA1c) data at baseline and after intervention were included for this post hoc analysis. We used the multi-way analysis of variance to assess the differences between the diabetes remission and non-remission groups or between intervention groups in changes of the indexes of insulin sensitivity, insulin secretion, and beta cell function.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!