Ab initio spin-flip configuration interaction (SF-CI) methods with the finite-field (FF) scheme are applied to the calculation of static second hyperpolarizabilities (γ) of several singlet diradical systems, i.e., the model H2 molecule under dissociation, p-quinodimethane, o-quinoid five-membered ring, and 1,4-bis(imidazole-2-ylidene)cyclohexa-2,5-diene (BI2Y) models. The SF-CI method using the UHF reference wave function provides the qualitatively correct diradical character (y) dependence of γ in a wide range of a diradical character region for H2 under dissociation and p-quinodimethane as well as o-quinoid five-membered ring models. For BI2Y, which is a real diradical system, a non-negligible spin contamination is found in the spin-unrestricted Hartree-Fock (UHF) triplet state, which results in overestimations (SF-CIS) or underestimations (SF-CIS(D)) of γ. Such deficiencies are significantly reduced when using the pure spin state, i.e., the restricted open-shell HF (ROHF) triplet wave function as the reference wave function. These results indicate the applicability of the FF-SF-CI method starting with a pure or a nearly pure high-spin state to provide qualitative or semiquantitative γ for large-size diradical systems. For selected systems, these SF-CI results are also compared to the SF equation of motion coupled cluster singles and doubles (SF-EOM-CCSD) and to SF time-dependent density functional theory (SF-TDDFT) schemes. In particular, large amounts of Hartree-Fock exchange in the functional are required to obtain qualitatively correct dependence of γ on y in the case of p-quinodimethane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct700118q | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY.
The linkage of an imidazole-based N-heterocyclic olefin (NHO), containing a terminal CH2 donor group, with a phosphorus-centered diradical molecular fragment leads to an open-shell singlet diphospha-indenylide system, a new class of P-heterocycles, which can be interpreted both as a phosphorus-centered diradicaloid and as a zwitterion with a permanent, overall charge separation between the N- and P-heterocyclic ring systems. The rotation of the imidazole ring, which is thermally possible due to a central C-C bond with a weakened π-component, changes both the charge separation and diradical character depending on the dihedral angle, as quantum mechanical calculations indicate. By varying the bulkiness of substituents at the imidazole-based NHO, it was possible to obtain different diphospha-indenylide species with different rotation angles in the solid state and hence varying diradical character.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
Aminophosphonates serve as extremely important moieties with respect to their activities in biological systems. However, incorporating a Nitrogen and Phosphorus moiety by conventional techniques in ionic mode is usually associated with extensive prefunctionalization of the substrates, employing harsh conditions and reagents that limit the viability of these methods. Introducing both of these components as radicals may be a viable option.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China.
Herein, SUMO-LUMO inversion (SLI) radicals - were designed by the combination of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical and pyridinium derivatives (electron-withdrawing groups) for the first time. The energy of the LUMO lies below that of the SUMO, which deviated from the Aufbau principle as an alternative electronic configuration beyond the well-established SOMO-HOMO inversed system. Thus, for SLI radicals, the injection of one extra electron preferred to occupy the LUMO rather than the SUMO, giving diradicals, one of which had been fully confirmed by single crystal analysis, VT-NMR and VT-EPR experiments, as well as DFT calculations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.
ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!