Time-dependent density functional theory (TDDFT) is a powerful tool allowing for accurate description of excited states in many nanoscale molecular systems; however, its application to large molecules may be plagued with difficulties that are not immediately obvious from previous experiences of applying TDDFT to small molecules. In TDDFT, the appearance of spurious charge-transfer states below the first optical excited state is shown to have significant effects on the predicted absorption and emission spectra of several donor-acceptor substituted molecules. The same problem affects the predictions of electronic spectra of molecular aggregates formed from weakly interacting chromophores. For selected benchmark cases, we show that today's popular density functionals, such as purely local (Local Density Approximation, LDA) and semilocal (Generalized Gradient Approximation, GGA) models, are qualitatively wrong. Nonlocal hybrid approximations including both semiempirical (B3LYP) and ab initio (PBE1PBE) containing a small fraction (20-25%) of Fock-like orbital exchange are also susceptible to such problems. Functionals that contain a larger fraction (50%) of orbital exchange like the early hybrid (BHandHLYP) are shown to exhibit far fewer spurious charge-transfer (CT) states at the expense of accuracy. Based on the trends observed in this study and our previous experience we formulate several practical approaches to overcome these difficulties providing a reliable description of electronic excitations in nanosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct600282k | DOI Listing |
Nano Lett
May 2024
Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States.
Quantum emitters are essential components of quantum photonic circuitry envisioned beyond the current optoelectronic state-of-the-art. Two dimensional materials are attractive hosts for such emitters. However, the high single photon purity required is rarely realized due to the presence of spectrally degenerate classical light originating from defects.
View Article and Find Full Text PDFJ Comput Chem
August 2022
PSL University, CNRS, Chimie ParisTech-PSL, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), Paris, France.
Considering as test case a family of organic rod like push-pull molecules, we derived and applied density based index enabling the description and diagnostic of the electronic density evolution in real time-time dependent density functional theory (RT-TDDFT) simulations. In particular, both the charge transfer (CT) distance and a diagnostic index, the D and M respectively, were computed on the fly from the density distribution obtained at a given time and the reference ground state density and their mean values were compared with what obtained at Linear Response-TDDFT level. Besides giving a way of analyzing the density redistribution occurring in time, these tools allowed to show how RT-TDDFT, which is definitely a powerful method to model the evolution of the density in CT or charge separation processes, can be affected by the same artifacts known for LR-TDDFT approaches and, particularly, to those related to the use of approximate exchange correlation functionals.
View Article and Find Full Text PDFJ Chem Phys
May 2021
Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France.
Transition Metal Complexes (TMCs) are known for the rich variety of their excited states showing different nature and degrees of locality. Describing the energies of these excited states with the same degree of accuracy is still problematic when using time-dependent density functional theory in conjunction with the most current density functional approximations. In particular, the presence of unphysically low lying excited states possessing a relevant Charge Transfer (CT) character may significantly affect the spectra computed at such a level of theory and, more relevantly, the interpretation of their photophysical behavior.
View Article and Find Full Text PDFJ Chem Theory Comput
July 2021
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
For many types of vertical excitation energies, linear-response time-dependent density functional theory (LR-TDDFT) offers a useful degree of accuracy combined with unrivaled computational efficiency, although charge-transfer excitation energies are often systematically and dramatically underestimated, especially for large systems and those that contain explicit solvent. As a result, low-energy electronic spectra of solution-phase chromophores often contain tens to hundreds of spurious charge-transfer states, making LR-TDDFT needlessly expensive in bulk solution. Intensity borrowing by these spurious states can affect intensities of the valence excitations, altering electronic bandshapes.
View Article and Find Full Text PDFJ Phys Chem A
March 2021
Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany.
Bacteriochlorophyll and chlorophyll molecules are crucial building blocks of the photosynthetic apparatus in bacteria, algae, and plants. Embedded in transmembrane protein complexes, they are responsible for the primary processes of photosynthesis: excitation energy and charge transfer. Here, we use many-body perturbation theory within the approximation and Bethe-Salpeter equation (BSE) approach to calculate the electronic structure and optical excitations of bacteriochlorophylls , , , , and and chlorophylls and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!