Extensively drug-resistant (XDR) Gram-negative bacilli (GNB) are defined as bacterial isolates susceptible to two or fewer antimicrobial categories. XDR-GNB mainly occur in Enterobacteriaceae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The prevalence of XDR-GNB is on the rise in China and in other countries, and it poses a major public health threat as a result of the lack of adequate therapeutic options. A group of Chinese clinical experts, microbiologists and pharmacologists came together to discuss and draft a consensus on the laboratory diagnosis, clinical management and infection control of XDR-GNB infections. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created according to documents from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). Multiple risk factors of XDR-GNB infections are analyzed, with long-term exposure to extended-spectrum antimicrobials being the most important one. Combination therapeutic regimens are summarized for treatment of XDR-GNB infections caused by different bacteria based on limited clinical studies and/or laboratory data. Most frequently used antimicrobials used for the combination therapies include aminoglycosides, carbapenems, colistin, fosfomycin and tigecycline. Strict infection control measures including hand hygiene, contact isolation, active screening, environmental surface disinfections, decolonization and restrictive antibiotic stewardship are recommended to curb the XDR-GNB spread.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmi.2015.11.004 | DOI Listing |
Med Oral Patol Oral Cir Bucal
January 2025
Background: This study aimed to evaluate the impact of oral hygiene (OH) with chlorhexidine (CHX) on the evolution of nosocomial infections (NI).
Material And Methods: Electronic searches were carried out in PubMed, Scopus, Cochrane Library, Web of Science, VHL, and Grey Literature databases. Randomized clinical trials were included.
Infect Dis (Lond)
January 2025
Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.
Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.
J Infect Dev Ctries
December 2024
Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil.
Introduction: Antimicrobial resistance (AMR) is a major public health challenge globally. This study aimed to analyze the antibacterial consumption (ATBc), and the incidence of multidrug-resistant organisms (MDRO), focusing on pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE group), in a Brazilian tertiary care hospital.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Introduction: The objective of this study was to assess the effectiveness of ivermectin and colchicine as treatment options for coronavirus disease 2019 (COVID-19).
Methodology: A three-arm randomized controlled clinical trial was conducted in the Triage Clinic of the family medicine department at Ain Shams University Hospitals on participants who had been diagnosed with moderate COVID-19. Patients aged < 18 years or > 65 years, with any co-morbidities, pregnant or lactating females, and those with mild or severe COVID-19 confirmed cases were excluded.
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!