Download full-text PDF

Source
http://dx.doi.org/10.1097/PEC.0000000000000640DOI Listing

Publication Analysis

Top Keywords

c-3 epimer
4
epimer 25-hydroxyvitamin
4
25-hydroxyvitamin assess
4
assess vitamin
4
vitamin deficiency
4
deficiency children
4
children fractures
4
c-3
1
25-hydroxyvitamin
1
assess
1

Similar Publications

In this study, we extended a previously developed one-pot double derivatization reaction to establish the first routine isotope-coded multiplex derivatization for vitamin D and its metabolites for application in clinical environments, using commercial reagents, without the need for specialized reagents and advanced synthesis requirements. The original derivatization process consisted of using both a Cookson-type reagent and derivatization of hydroxyl groups. Initially, the analytes are derivatized by a Diels-Alder reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), followed by acetylation using acetic anhydride, catalyzed by 4-dimethylaminopyridine at room temperature.

View Article and Find Full Text PDF

Synthesis of novel α-spinasterol derivatives and their inhibitory effects on CCL17 and CCL22 chemokine expression.

Steroids

December 2024

Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Natural α-spinasterol is well known for its various biological activities. In this study, we investigated the anti-inflammatory effects of newly synthesized α-spinasterol derivatives by tracking the expression of CCL17 and CCL22 chemokines, which serve as biomarkers for immune cell trafficking in skin inflammation. Initially, the 3-epimer of α-spinasterol, which results from inversion of stereochemistry at the C-3 position of α-spinasterol, was synthesized using the Mitsunobu reaction.

View Article and Find Full Text PDF

Advances in the biosynthesis of D-allulose.

World J Microbiol Biotechnol

November 2024

School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.

Article Synopsis
  • * There are two main ways to produce D-allulose: chemical synthesis, which can create unwanted byproducts, and biosynthesis, which uses enzymes to convert starch or glycerol into D-allulose more efficiently.
  • * The article reviews recent research on biosynthesis, highlighting the enzymes used, their properties, and the potential for improved production methods for D-allulose.
View Article and Find Full Text PDF

d-Allulose, a C-3 epimer of d-fructose, is a rare sugar with ∼70% of the sweetness of sucrose but a caloric content of only 0.4 kcal/g. Due to its low-calorie nature, d-allulose has garnered increasing interest in the food industry.

View Article and Find Full Text PDF

Metabolic Profiling of Rat Kidney Tissue Following Administration of D-Allulose.

J Appl Glycosci (1999)

August 2024

1 Research and Development, Matsutani Chemical Industry Co., Ltd.

D-Allulose (D-psicose) is a rare sugar and a C-3 epimer of D-fructose. D-Allulose has been reported to have several health benefits via its alteration of both glucose and lipid metabolism. It was previously reported that D-allulose alters the hepatic metabolomic profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!