The stiffening of blood vessel walls is associated with inflammatory diseases, including atherosclerosis, diabetes, and obesity. These diseases are driven by the excessive recruitment of inflammatory leukocytes out of the bloodstream and into tissues, but whether vascular stiffening plays a direct role in this process is not clear. In this study, we investigated the possibility that leukocyte capture from blood flow is enhanced on stiffer substrates. We modeled blood flow in vitro by perfusing monocytic cells over hydrogels that matched the stiffness of healthy and diseased arteries. The hydrogels were coated with either E-selectin or P-selectin, which are the endothelial adhesion proteins known to mediate immune cell capture from flow. Interestingly, we discovered that cell attachment to P-selectin coated gels was not dependent on substrate stiffness, while attachment through E-selectin was enhanced on stiffer gels. Specifically we found that on E-selectin coated gels, cells attached in greater numbers, remained attached for longer time periods, and rolled more slowly on stiff gels than soft gels. These results suggest that vascular stiffening could promote leukocyte adhesion to vessel walls where E-selectin is expressed, but may have less of an effect when P-selectin is also present.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726980 | PMC |
http://dx.doi.org/10.1039/c5ib00199d | DOI Listing |
Nat Commun
January 2025
Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.
View Article and Find Full Text PDFAm J Cardiol
January 2025
Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
A dual-therapy sirolimus-eluting and CD34+ antibody-coated Combo Stent (DTS) has been developed to enhance endothelization and capture endothelial progenitor cells; however, vessel responses following DTS implantation remain unclear. Therefore, we evaluated early- and mid-term intravascular characteristics of DTS using intravascular imaging modalities. This multicenter, prospective, observational study enrolled 88 patients (95 lesions) who underwent DTS (43 patients, 48 lesions) or sirolimus-eluting Orsiro stent (SES, 45 patients, 47 lesions) implantation.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. Electronic address:
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!