Protein Structure Prediction:  The Next Generation.

J Chem Theory Comput

Center for Theoretical Biological Physics, La Jolla, California 92093, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, Department of Physics, University of California, La Jolla, California 92093, and Department of Chemistry, University of Illinois, Urbana [Formula: see text] Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801.

Published: May 2006

Over the last 10-15 years a general understanding of the chemical reaction of protein folding has emerged from statistical mechanics. The lessons learned from protein folding kinetics based on energy landscape ideas have benefited protein structure prediction, in particular the development of coarse grained models. We survey results from blind structure prediction. We explore how second generation prediction energy functions can be developed by introducing information from an ensemble of previously simulated structures. This procedure relies on the assumption of a funneled energy landscape keeping with the principle of minimal frustration. First generation simulated structures provide an improved input for associative memory energy functions in comparison to the experimental protein structures chosen on the basis of sequence alignment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct0600058DOI Listing

Publication Analysis

Top Keywords

protein structure
8
protein folding
8
energy landscape
8
structure prediction
8
energy functions
8
simulated structures
8
protein
5
structure prediction 
4
prediction  generation
4
generation 10-15
4

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Experiencing a traumatic event may lead to Posttraumatic Stress Disorder (PTSD), including symptoms such as flashbacks and hyperarousal. Individuals suffering from PTSD are at increased risk of cardiovascular disease (CVD), but it is unclear why. This study assesses shared genetic liability and potential causal pathways between PTSD and CVD.

View Article and Find Full Text PDF

Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!