Synthesis of 1,4-amino alcohols by Grignard reagent addition to THF and N-tosyliminobenzyliodinane.

Org Biomol Chem

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Published: January 2016

The synthesis of 1,4-amino alcohols from THF treated with N-tosyliminobenzyliodinane (PhINTs) followed by a Grignard reagent under mild reaction conditions at room temperature is described herein. Various Grignard reagents were shown to be compatible, furnishing the corresponding 4-substituted-N-1,4-tosylamino alcohols in good to excellent yields. A partial or full detosylation of the N-tosyl-1,4-amino alcohol was observed in instances involving a sterically bulky Grignard reagent, leading to the deprotected 1,4-amino alcohol product in moderate to good yields. The synthetic utility of this protocol was demonstrated by the synthesis of a 5-substituted-N-tosyl-1,5-amino alcohol from THP and the conversion of two examples to their corresponding γ-lactam and pyrrolidine adducts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5ob02302eDOI Listing

Publication Analysis

Top Keywords

grignard reagent
12
synthesis 14-amino
8
14-amino alcohols
8
grignard
4
alcohols grignard
4
reagent addition
4
addition thf
4
thf n-tosyliminobenzyliodinane
4
n-tosyliminobenzyliodinane synthesis
4
alcohols thf
4

Similar Publications

-functionalization of pillar[]arenes has been a formidable challenge, partially due to the fragility of their macrocyclic skeletons. In this concise report, we describe a facile synthetic method for monoarylation/alkylation at the position to the oxime functionality in pillar[4]arene[1]benzoquinone monoxime () via addition of Grignard reagents. The described method enables the creation of various mono--alkyl/aryl-substituted pillar[5]arene derivatives that were previously inaccessible.

View Article and Find Full Text PDF

Stereoretentive Conversion to -Glycosides from -Glycosides via Ligand-Coupling on Sulfur(IV).

Org Lett

January 2025

The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.

A novel strategy is reported for the stereoselective synthesis of C(sp)-C(sp) -glycosides, which converts heteroaryl -glycosides into heteroaryl -glycosides with retention of configuration through a sequential process involving oxidation and Grignard reagent attack. The new method involves the generation of a S(IV) intermediate, followed by ligand coupling of the glycosyl and heteroaryl groups to yield heteroaryl -glycosides. The diverse heteroaryl -glycosides were achieved with good efficiency.

View Article and Find Full Text PDF

Heterogeneous copper-catalyzed Grignard reactions with allylic substrates.

Chem Commun (Camb)

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.

Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.

View Article and Find Full Text PDF

Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.

View Article and Find Full Text PDF

Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!