Ethnopharmacological Relevance: Glycyrrhizae radix (GR) is a medicinal herb extensively used in traditional Chinese medicine. This study aimed to evaluate the pharmacological effect of GR and the possible mechanisms of GR, to provide a pharmacological basis in traditional medicine.
Materials And Methods: In the present study, C. elegans (L1-larvae to young adults) was exposed to 0.12-0.24 g/mL of GR in 12-well sterile tissue culture plates at 20°C in the presence of food. Lethality, growth, lifespan, reproduction, locomotion, metabolism, intestinal autofluorescence, and reactive oxygen species (ROS) production assays were performed to investigate the possible safety profile and beneficial effects of GR in these nematodes. We found that the lifespan of nematodes exposed to 0.18-0.24 g/mL of GR was extended. We then determined the mechanism of the longevity effect of GR using quantitative reverse transcription PCR and oxidative stress resistance assays induced by heat and paraquat.
Results: Prolonged exposure to 0.12-0.24 g/mL of GR did not induce lethality, alter body length, morphology or metabolism, affect brood size, locomotion, the development of D-type GABAergic motor neurons, or induce significant induction of intestinal autofluorescence and intestinal ROS production. In C. elegans, pretreatment with GR suppressed the damage due to heat-stress or oxidative stress induced by paraquat, a ROS generator, on lifespan, and inhibited the induction of intestinal ROS production induced by paraquat. Moreover, prolonged exposure to GR extended lifespan, increased locomotion and decreased intestinal ROS production in adult day-12 nematodes. Furthermore, prolonged exposure to GR significantly altered the expression patterns of genes encoding the insulin-like signaling pathway which had a key role in longevity control. Mutation of daf-16 gene encoding the FOXO transcription factor significantly decreased lifespan, suppressed locomotion, and increased intestinal ROS production in GR exposed adult nematodes.
Conclusions: GR is relatively safe and has protective effects against the damage caused by both heat-stress and oxidative stress at the examined concentrations. Furthermore, GR is capable of extending the lifespan of nematodes, and the insulin-like signaling pathway may play a crucial role in regulating the lifespan-extending effects of GR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2015.10.008 | DOI Listing |
Biochem Pharmacol
January 2025
Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan. Electronic address:
Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China. Electronic address:
Urban air pollutants, mainly represented by PM containing organic and inorganic substances, can penetrate the human skin and trigger oxidative stress, potentially causing skin barrier damage and aging. κ-Carrageenan oligosaccharides as degradation products of natural sulfated polysaccharide have a great potential for skin moisturization as well as improving oxidative stress and inflammation. In this study, κ-carrageenan tetrasaccharide was obtained by enzymatic digestion of κ-carrageenan, and its role in alleviating particulate matter-induced inflammatory response in HaCaT keratinocyte cell line and skin barrier dysfunction was evaluated.
View Article and Find Full Text PDFBiomaterials
January 2025
Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:
Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.
View Article and Find Full Text PDFFree Radic Res
January 2025
Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!