Adenosine signaling via A1 receptor (A1R) and A2A receptor (A2AR) has shown promise in revealing potential targets for neuroprotection in cerebral ischemia. We recently showed a novel mechanism by which A1R activation with N(6)-cyclopentyl adenosine (CPA) induced GluA1 and GluA2 AMPA receptor (AMPAR) endocytosis and adenosine-induced persistent synaptic depression (APSD) in rat hippocampus. This study further investigates the mechanism of A1R-mediated AMPAR internalization and hippocampal slice neuronal damage through activation of protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B) using electrophysiological, biochemical and imaging techniques. Following prolonged A1R activation, GluA2 internalization was selectively blocked by PP2A inhibitors (okadaic acid and fostriecin), whereas inhibitors of PP2A, PP1 (tautomycetin), and PP2B (FK506) all prevented GluA1 internalization. Additionally, GluA1 phosphorylation at Ser831 and Ser845 was reduced after prolonged A1R activation in hippocampal slices. PP2A inhibitors nullified A1R-mediated downregulation of pSer845-GluA1, while PP1 and PP2B inhibitors prevented pSer831-GluA1 downregulation. Each protein phosphatase inhibitor also blunted CPA-induced synaptic depression and APSD. We then tested whether A1R-mediated changes in AMPAR trafficking and APSD contribute to hypoxia-induced neuronal injury. Hypoxia (20 min) induced A1R-mediated internalization of both AMPAR subunits, and subsequent normoxic reperfusion (45 min) increased GluA1 but persistently reduced GluA2 surface expression. Neuronal damage after hypoxia-reperfusion injury was significantly blunted by pre-incubation with the above protein phosphatase inhibitors. Together, these data suggest that A1R-mediated protein phosphatase activation causes persistent synaptic depression by downregulating GluA2-containing AMPARs; this previously undefined role of A1R stimulation in hippocampal neuronal damage represents a novel therapeutic target in cerebral ischemic damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2015.11.018DOI Listing

Publication Analysis

Top Keywords

protein phosphatase
20
neuronal damage
16
a1r activation
12
synaptic depression
12
ampa receptor
8
hippocampal neuronal
8
persistent synaptic
8
depression apsd
8
prolonged a1r
8
pp2a inhibitors
8

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.

View Article and Find Full Text PDF

Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.

View Article and Find Full Text PDF

The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore mitochondrial transfer in dental mesenchymal stem cells (MSCs) and its impact on their ability to differentiate into odontogenic cells.
  • Flow cytometry, immunostaining, and advanced imaging techniques were utilized to analyze the presence and significance of mitochondrial transfer in these cells, revealing its role in promoting odontogenic differentiation.
  • The research found evidence of mitochondrial transfer through structures called tunneling nanotubes (TNTs) and showed that inhibiting this transfer affected key differentiation markers and gene expression related to odontogenesis.
View Article and Find Full Text PDF

Objective: To explore the mutation of gene in patients with myelodysplastic syndromes (MDS), and explore their correlation with mutations of other genes, clinical features and prognostic of patients.

Methods: High throughput DNA sequencing was used to identify mutations in common blood tumor genes. The mutational characteristics of the gene and the correlation between gene mutations and patients clinical characteristics and prognosis were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!