Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vibrotactile collision warning signals that create a sensation of motion across a driver's body result in faster brake reaction times (BRTs) to potential collision events. To date, however, such warnings have only simulated linear motion. We extended this research by exploring the effectiveness of collision warnings that incorporate vibrotactile patterns or "vibrotactile flow". In Experiment 1, expanding and contracting vibrotactile flow warnings were compared with a static warning (all tactors activated simultaneously) and a no warning condition in a car following scenario. Both vibrotactile flow warnings produced significantly faster BRTs than the static and no warning conditions. However, there was no directional effect. That is, there was no significant difference between contracting and expanding signals. Warnings that utilize vibrotactile flow therefore appear to provide an effective means of informing drivers about potential collision events. However, unlike comparable warnings utilizing linear motion, their effectiveness does not seem to depend on the precise relationship between the warning and collision events. Experiment 2 demonstrated that a tactile warning incorporating linear motion produced significantly faster BRTs than an expanding vibrotactile flow warning. Taken together, these results suggest that vibrotactile warnings that simulate linear motion may be more effective than vibrotactile flow warnings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TOH.2015.2501798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!