Recombination effects can affect the detectors used for the dosimetry of radiotherapy fields. They are important when using ionization chambers, especially in liquid-filled ionization chambers, and should be corrected for. The introduction of flattening-filter-free accelerators increases the typical dose-per-pulse used in radiotherapy beams, which leads to more important recombination effects. Diamond detectors provide a good solution for the dosimetry and quality assurance of small radiotherapy fields, due to their low energy dependence and small volume. The group of Università di Roma Tor Vergata has developed a synthetic diamond detector, which is commercialized by PTW as microDiamond detector type 60019. In this work we present an experimental characterization of the collection efficiency of the microDiamond detector, focusing on high dose-per-pulse FFF beams. The collection efficiency decreases with dose-per-pulse, down to 0.978 at 2.2 mGy/pulse, following a Fowler-Attix-like curve. On the other hand, we have found no significant dependence of the collection efficiency on the pulse repetition frequency (or pulse period).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/61/1/N11 | DOI Listing |
Front Oncol
December 2024
Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany.
Biomed Phys Eng Express
December 2024
Medical Physics Consultant, INTECNUS Foundation, RP82 8400, San Carlos de Bariloche, Río Negro, Argentina.
. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2024
Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Purpose: To provide beam quality correction factors ( ) for detectors used in Ir brachytherapy dosimetry measurements.
Materials And Methods: Ten detectors were studied, including the PTW 30013 and Exrading12 Farmer large cavity chambers, seven medium (0.1-0.
Phys Med
November 2024
Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.
Background: Dosimetry in intraoperative electron radiotherapy (IOERT) poses distinct challenges, especially with inclined applicators deviating from international protocols. Ion recombination in ionization chambers, electron beam degradation due to scattering in cylindrical applicators, coupled with a lack of a well-defined beam quality surrogate, complicate output factor determination with ionization chambers. Synthetic diamond-based detectors, offer potential solutions; however, their suitability requires further exploration.
View Article and Find Full Text PDFMed Phys
December 2024
Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK.
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!