A dual-plane in-line digital holographic imaging method incorporating volume holographic microscopy (VHM) is presented to reconstruct objects in a single shot while eliminating zero-order and twin-image diffracted waves. The proposed imaging method is configured such that information from different axial planes is acquired simultaneously using multiplexed volume holographic imaging gratings, as used in VHM, and recorded as in-line holograms where the corresponding reference beams are generated in the fashion of Gabor's in-line holography. Unlike conventional VHM, which can take axial intensity information only at focal depths, the proposed method digitally reconstructs objects at any axial position. Further, we demonstrate the proposed imaging technique's ability to effectively eliminate zero-order and twin images for single-shot three-dimensional object reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.005542DOI Listing

Publication Analysis

Top Keywords

holographic imaging
12
volume holographic
12
in-line digital
8
digital holographic
8
holographic microscopy
8
imaging method
8
proposed imaging
8
holographic
5
imaging
5
in-line
4

Similar Publications

Optical diffraction tomography using a self-reference module.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.

Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.

View Article and Find Full Text PDF

A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.

View Article and Find Full Text PDF

We present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.

View Article and Find Full Text PDF

Computer-generated holography (CGH) is an advanced technology for three-dimensional (3D) displays. While the stochastic gradient descent (SGD) method is effective for holographic optimization, its application to holographic video displays is computationally expensive, as each frame requires separate optimization. To address this, we propose a novel, to the best of our knowledge, clustering optimization strategy to accelerate the SGD process for holographic video displays.

View Article and Find Full Text PDF

Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!