AI Article Synopsis

Article Abstract

Cell senescence is dependent on the arrest in cell cycle. Here we studied the role of mitochondrial retrograde response signaling in yeast cell survival under a prolonged arrest. We have found that, unlike G1, long-term arrest in mitosis or S phase results in a loss of colony-forming abilities. Consistent with previous observations, loss of mitochondrial DNA significantly increased the survival of arrested cells. We found that this was because the loss increases the duration of G1 phase. Unexpectedly, retrograde signaling, which is typically triggered by a variety of mitochondrial dysfunctions, was found to be a negative regulator of the survival after the release from S-phase arrest induced by the telomere replication defect. Deletion of retrograde response genes decreased the arrest-induced death in such cells, whereas deletion of negative regulator of retrograde signaling MKS1 had the opposite effect. We provide evidence that these effects are due to alleviation of the strength of the S-phase arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792543PMC
http://dx.doi.org/10.18632/oncotarget.6406DOI Listing

Publication Analysis

Top Keywords

retrograde signaling
12
mitochondrial retrograde
8
retrograde response
8
negative regulator
8
s-phase arrest
8
arrest
6
mitochondrial
4
signaling
4
signaling inhibits
4
survival
4

Similar Publications

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

Background: Junctional rhythm (JR) frequently occurs during radiofrequency (RF) ablation procedures targeting the slow pathway (SP) for atrioventricular nodal re-entrant tachycardia (AVNRT), signaling successful ablation. Two types of JR have been noticed: typical JR as His activation preceding atrial activation, and atypical JR as atrial activation preceding the His activation. Nevertheless, the origin and characteristics of JR remain incompletely defined.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!