Two efficient ruthenium sensitizers with a phenothiazine-modified bipyridine as an ancillary ligand, coded SCZ-1 and SCZ-2, have been developed as dyes in dye-sensitized solar cells (DSSCs). Both sensitizers exhibit low-energy metal-to-ligand charge transfer (MLCT) bands centered at 539 nm with high molar extinction coefficients of 1.77 × 10(4) M(-1) cm(-1) for SCZ-1 and 1.66 × 10(4) M(-1) cm(-1) for SCZ-2, which are significantly higher than the corresponding value for the reference N719 (1.27 × 10(4) M(-1) cm(-1)), indicating that the light-harvesting capacity of ruthenium sensitizers can be reinforced by introducing phenothiazine moieties into the bipyridine ligand. Under AM 1.5G irradiation (100 mW cm(-2)), SCZ-1 and SCZ-2 sensitized DSSC devices show impressive power conversion efficiencies (PCE) up to 10.4% by using of iodide-based electrolytes, which exceeds that of N719 (9.9%) under the same conditions. Both of the open circuit voltage (VOC) and fill factor (FF) of SCZ-sensitized solar cells approximate to those of N719-sensitized cell. The relatively higher efficiencies of the SCZ-sensitized cells than that of N719-sensitized cell come from their higher short-circuit photocurrent density (JSC), which may be mainly attributed to the high absorption coefficient. The absorption spectrum and device efficiency of SCZ-1 are both quite close to those of SCZ-2, suggesting that the difference in alkyl chains on the N atom of phenothiazine is not a decisive factor in affecting the photovoltaic performance of dyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b09160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!