Background: Increased red blood cell count (Erythrocytosis) is an important paraneoplastic syndrome of hepatocellular carcinoma (HCC) and is a significant risk factor for lethal lung artery thromboembolism. HCC-associated erythrocytosis is partially caused by the ability of several HCC cells to produce erythropoietin (EPO). Prolyl-4-hydroxylase 2 (PHD2) is an enzyme encoded by the gene EGLN1. The best-known function of PHD2 is to mediate the oxygen-dependent degradation of the labile α-subunit of hypoxia-inducible factor (HIF). However, there is increasing evidence that PHD2 also regulates HIF-independent pathways by interacting with other substrates.

Methods: In the EPO-producing human HCC cell line HepG2, the expression of PHD2 gene was silenced with siRNA. EPO production was estimated using quantitative PCR and ELISA.

Results: In HepG2 cells, PHD2 suppresses the activity of TGF-β1 pathway and consequently maintains the expression of hepatocyte nuclear factor-4α (HNF-4α), an important transcription factor promoting the EPO expression in hepatocytes. PHD2 knockdown caused a marked reduction of EPO production. HIF seemed not to be involved in this biology.

Conclusion: Our findings show that PHD2 represents a potential contributing factor for HCC-associated erythrocytosis. Selective inhibition of PHD2 in HCC cells might be considered as a new way to manage erythrocytosis in HCC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000438581DOI Listing

Publication Analysis

Top Keywords

hepatocyte nuclear
8
nuclear factor-4α
8
hcc-associated erythrocytosis
8
hcc cells
8
phd2
8
epo production
8
erythrocytosis
5
hcc
5
prolyl-4-hydroxylase contributes
4
contributes hepatocellular
4

Similar Publications

Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis.

Nat Commun

January 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.

View Article and Find Full Text PDF

Therapeutic insight into the role of nuclear protein HNF4α in liver carcinogenesis.

Adv Protein Chem Struct Biol

January 2025

Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India. Electronic address:

Hepatocyte nuclear factor 4-alpha (HNF4α), a well-preserved member of the nuclear receptor superfamily of transcription factors, is found in the liver. It is recognized as a central controller of gene expression specific to the liver and plays a key role in preserving the liver's homeostasis. Irregular expression of HNF4α is increasingly recognized as a crucial factor in the proliferation, cell death, invasiveness, loss of specialized functions, and metastasis of cancer cells.

View Article and Find Full Text PDF

Elafibranor: A promising therapeutic approach for liver fibrosis and gut barrier dysfunction in alcohol-associated liver disease.

World J Gastroenterol

January 2025

Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.

This article discusses the recent study written by Koizumi . Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, which is driven by complex mechanisms, including lipid accumulation, apoptosis, and inflammatory responses exacerbated by gut barrier dysfunction. The study explored the therapeutic potential of elafibranor, a dual peroxisome proliferator-activated receptor alpha/delta agonist.

View Article and Find Full Text PDF

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Chemotherapeutic drugs often fail to provide long-term efficacy due to their lack of specificity and high toxicity. To enhance the biosafety and reduce the side effects of these drugs, various nanocarrier delivery systems have been developed. In this study, we loaded the anticancer drug doxorubicin (DOX) and an MRI contrast agent into silica nanoparticles, coating them with pH-responsive and tumor cell-targeting polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!