Characterizing the spatial distribution of proteins directly from microscopy images is a difficult problem with numerous applications in cell biology (e.g. identifying motor-related proteins) and clinical research (e.g. identification of cancer biomarkers). Here we describe the design of a system that provides automated analysis of punctate protein patterns in microscope images, including quantification of their relationships to microtubules. We constructed the system using confocal immunofluorescence microscopy images from the Human Protein Atlas project for 11 punctate proteins in three cultured cell lines. These proteins have previously been characterized as being primarily located in punctate structures, but their images had all been annotated by visual examination as being simply "vesicular". We were able to show that these patterns could be distinguished from each other with high accuracy, and we were able to assign to one of these subclasses hundreds of proteins whose subcellular localization had not previously been well defined. In addition to providing these novel annotations, we built a generative approach to modeling of punctate distributions that captures the essential characteristics of the distinct patterns. Such models are expected to be valuable for representing and summarizing each pattern and for constructing systems biology simulations of cell behaviors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704559 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1004614 | DOI Listing |
Spinal Cord
January 2025
McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Study Design: Experimental Animal Study.
Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.
Setting: University of Florida laboratory in Gainesville, USA.
Alzheimers Dement
December 2024
Homi Bhabha National Institute, Mumbai, Maharashtra, India.
Background: Receptor Tyrosine kinase-mediated signaling is indispensable for the cell's normal functioning, the perturbation of which leads to disease conditions. The altered expression and activity of several Receptor Tyrosine kinases (RTKs) are known to regulate the pathophysiology of Alzheimer's disease (AD). However, the mechanistic details remain illusive.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.
The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Ralstonia solanacearum causes bacterial wilt, a devastating disease in solanaceous crops. The pathogenicity of R. solanacearum depends on its type III secretion system, which delivers a suite of type III effectors into plant cells.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Sciences, John Jay College of the City University of New York, New York, New York, USA.
Unlabelled: The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast , stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!