Fused-silica packaging glass fabricated with a hierarchical structure by integrating small (ultrathin nanorods) and large (honeycomb nanowalls) structures was demonstrated with exceptional light-harvesting solar performance, which is attributed to the subwavelength feature of the nanorods and an efficient scattering ability of the honeycomb nanowalls. Si solar cells covered with the hierarchically structured packaging glass exhibit enhanced conversion efficiency by 5.2% at normal incidence, and the enhancement went up to 46% at the incident angle of 60°. The hierarchical structured packaging glass shows excellent self-cleaning characteristics: 98.8% of the efficiency is maintained after 6 weeks of outdoor exposure, indicating that the nanostructured surface effectively repels polluting dust/particles. The presented self-cleaning omnidirectional light-harvesting design using the hierarchical structured packaging glass is a potential universal scheme for practical solar applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b05564DOI Listing

Publication Analysis

Top Keywords

packaging glass
20
structured packaging
12
nanostructured surface
8
self-cleaning omnidirectional
8
solar cells
8
honeycomb nanowalls
8
hierarchical structured
8
packaging
5
glass hierarchically
4
hierarchically nanostructured
4

Similar Publications

The frozen storage of biopharmaceuticals brings new challenges to the primary packaging material. Due to an increasing demand and the downsides of standard type I glass vials, such as vial breakage, novel vial types for special applications of parenteral drug products have been introduced to the market in the past years. Mechanical stresses due to dimensional changes experienced during freezing and thawing could change the material properties, hence affecting the interaction with the drug product stored in the vial or functionality such as overall integrity.

View Article and Find Full Text PDF
Article Synopsis
  • A life cycle assessment evaluated the environmental impacts of polyethylene (PE) packaging compared to alternatives like paper, glass, aluminum, and steel in the U.S.
  • The study focused on five packaging applications and assessed various environmental impacts such as global warming potential (GWP), energy use, resources, and water scarcity.
  • Findings show that substituting PE for other materials can decrease life cycle GWP emissions by about 70%, offering significant benefits for packaging sustainability.
View Article and Find Full Text PDF

Analysis of Plasticizer Contamination Throughout Olive Oil Production.

Molecules

December 2024

LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This study monitored the contamination of 32 plasticizers in olive oil throughout the production and storage process. Samples were collected at different stages of production from three olive oil production lines in distinct regions of Portugal and analyzed for 23 phthalates and 9 phthalates substitutes to identify contamination sources. The developed analytical method employed liquid-liquid extraction with hexane/methanol (1:4, /), followed by centrifugation, extract removal, and freezing as a clean-up step.

View Article and Find Full Text PDF

This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components.

View Article and Find Full Text PDF

Research efforts are increasingly directed towards the development of biodegradable polymers derived from renewable agricultural resources. Polymer blends, which combine multiple polymers, offer enhanced properties such as ductility and toughness while being more cost-effective compared to the development of specialized copolymers. This study examines nine binary and four ternary blends of polylactic acid (PLA), poly(butylene succinate--adipate) (PBSA), and polyhydroxyalkanoate (PHA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!