A tide prediction and tide height control system for laboratory mesocosms.

PeerJ

Coastal and Marine Institute Laboratory, San Diego State University, San Diego, CA , United States.

Published: December 2015

Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662596PMC
http://dx.doi.org/10.7717/peerj.1442DOI Listing

Publication Analysis

Top Keywords

tide prediction
12
tide
8
control system
8
laboratory mesocosms
8
mesocosm studies
8
natural tide
8
tide cycles
8
immersion time
8
scale insect
8
system
5

Similar Publications

Development of a Novel Prognostic Model for Lung Adenocarcinoma Utilizing Pyroptosis-Associated LncRNAs.

Anal Cell Pathol (Amst)

January 2025

Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China.

Lung cancer is a highly prevalent and fatal cancer that seriously threatens the safety of people in various regions around the world. Difficulty in early diagnosis and strong drug resistance have always been difficulties in the treatment of lung cancer, so the prognosis of lung cancer has always been the focus of scientific researchers. This study used genotype-tissue expression (GTEx) and the cancer genome atlas (TCGA) databases to obtain 477 lung adenocarcinoma (LUAD) and 347 healthy individuals' samples as research subjects and divided LUAD patients into low-risk and high-risk groups based on prognostic risk scores.

View Article and Find Full Text PDF

Construction of a neutrophil extracellular trap formation-related gene model for predicting the survival of lung adenocarcinoma patients and their response to immunotherapy.

Transl Lung Cancer Res

December 2024

Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Lung adenocarcinoma (LUAD) is associated with high morbidity and mortality rates. Increasing evidence indicates that neutrophil extracellular traps (NETs) play a critical role in tumor progression, metastasis and immunosuppression in the LUAD tumor microenvironment (TME). Nevertheless, the use of NET formation-related genes (NFRGs) to predict LUAD patient survival and response to immunotherapy has not been explored.

View Article and Find Full Text PDF

Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.

View Article and Find Full Text PDF

Background: Bladder urothelial carcinoma (BLCA) is globally recognized as a prevalent malignancy. Its treatment remains challenging due to the extensive morbidity, high mortality rates, and compromised quality of life from postoperative complications and the lack of specific molecular targets. Our aim was to establish a prognostic model to evaluate the prognostic significance, assess immunotherapy responses, and determine drug susceptibility in patients with BLCA.

View Article and Find Full Text PDF

Background: Bladder urothelial carcinoma (BLCA) is a highly heterogeneous cancer with a wide range of prognoses, ranging from low-grade non-muscle-invasive bladder cancer (NMIBC), which has a good prognosis but a high recurrence rate, to high-grade muscle-invasive bladder cancer (MIBC), which has a poor prognosis. Glycosylation dysregulation plays a significant role in cancer development. Therefore, this study aimed to investigate the role of glycosyltransferases (GT)-related genes in the prognosis of BLCA and to develop a prognostic model based on these genes to predict overall survival (OS) and assess its clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!