Studies have shown that topiramate (TPM)-induced weight loss can be dependent on the central nervous system (CNS). However, the direct action of TPM on adipose tissue has not been tested previously. Thus, the present study aimed to examine whether TPM modulates lipolysis in 3T3-L1. The 3T3-L1 cells were incubated in 50 µM TPM for 30 min. The β-adrenergic stimulator, isoproterenol, was used as a positive control. The release of lactate dehydrogenase, non-esterified fatty acid, glycerol and incorporation of C-palmitate to lipid were analyzed. The phosphorylation of protein kinase A (PKA), hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL) and perilipin A, as well as the protein levels of comparative genetic identification 58 (CGI-58) were assessed. The levels of glycerol and non-esterified fatty acid increased markedly when the cells were treated with TPM. The TPM effects were similar to the isoproterenol positive control. Additionally, TPM reduced lipogenesis. These results were observed without any change in cell viability. Finally, the phosphorylation of PKA, HSL, ATGL and perilipin A, as well as the protein levels of CGI-58 were increased compared to the control cells. These results were similar to those observed in the cells treated with isoproterenol. The present results show that TPM increased the phosphorylation of pivotal lipolytic enzymes, which induced lipolysis in 3T3-L1 adipocytes, suggesting that this drug may act directly in the adipose tissue independent from its effect on the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660592PMC
http://dx.doi.org/10.3892/br.2015.514DOI Listing

Publication Analysis

Top Keywords

lipolysis 3t3-l1
12
3t3-l1 adipocytes
8
adipose tissue
8
isoproterenol positive
8
positive control
8
non-esterified fatty
8
fatty acid
8
atgl perilipin
8
perilipin well
8
well protein
8

Similar Publications

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress.

Genes Dis

March 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC.

View Article and Find Full Text PDF

The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism.

Molecules

November 2024

Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

This study investigated the fatty acid profile, permeability, and metabolic effects of a functional yogurt enriched with pomegranate oil, focusing on its impact on lipid metabolism and inflammatory responses. The yogurt's fatty acid composition was primarily composed of long-chain polyunsaturated fatty acids (54.37%), followed by saturated (29.

View Article and Find Full Text PDF

The repression of the lipolytic inhibitor G0s2 enhancers affects lipid metabolism.

Gene

February 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China. Electronic address:

The G0/G1 switch gene 2 (G0s2) is a selective inhibitor of adipose triglyceride lipase (ATGL) which is the rate-limiting enzyme for triglycerides (TGs) hydrolysis in adipocytes, and regulates the mobilization of TGs in adipocytes and hepatocytes. The expression and functional disorders of G0S2 are associated with various metabolic diseases and related pathological states, such as obesity and metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). However, the extent to which the transcriptional regulatory mechanisms mediated by the interaction between the G0s2 gene promoter and enhancer regions are involved remains unknown.

View Article and Find Full Text PDF

Objective: To investigate the mechanism of liraglutide affecting lipid metabolism by regulating lipolysis and lipogenesis in cells and ob/ob mice.

Methods: 3 T3-L1 cells were treated with liraglutide in vitro, and differentially expressed genes were screened by RNA sequencing. Gene Ontology (GO) and KEGG (Kvoto Encyclopedia of Genes and Genomes) enrichment analyses identified target genes for lipid regulation of liraglutide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!