Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intensity-modulated radiation therapy (IMRT) is able to achieve good target conformance with a limited dose to organs at risk (OARs); however, IMRT increases the irradiation volume and monitor units (MUs) required. The present study aimed to evaluate the use of an IMRT plan with fewer segments and MUs, while maintaining quality in the treatment of nasopharyngeal carcinoma. In the present study, two types of IMRT plan were therefore compared: The direct machine parameter optimization (DMPO)-RT method and the feedback constraint DMPO-RT (fc_DMPO-RT) method, which utilizes compensative feedback constraint in DMPO-RT and maintains optimization. Plans for 23 patients were developed with identical dose prescriptions. Each plan involved synchronous delivery to various targets, with identical OAR constraints, by means of 7 coplanar fields. The average dose, maximum dose, dose-volume histograms of targets and the OAR, MUs of the plan, the number of segments, delivery time and accuracy were subsequently compared. The fc_DMPO-RT exhibited superior dose distribution in terms of the average, maximum and minimum doses to the gross tumor volume compared with that of DMPO-RT (t=62.7, 20.5 and 22.0, respectively; P<0.05). The fc_DMPO-RT also resulted in a smaller maximum dose to the spinal cord (t=7.3; P<0.05), as well as fewer MUs, fewer segments and decreased treatment times than that of the DMPO-RT (t=6.2, 393.4 and 244.3, respectively; P<0.05). The fc_DMPO-RT maintained plan quality with fewer segments and MUs, and the treatment time was significantly reduced, thereby resulting in reduced radiation leakage and an enhanced curative effect. Therefore, introducing feedback constraint into DMPO may result in improved IMRT planning. In nasopharyngeal carcinoma specifically, feedback constraint resulted in the improved protection of OARs in proximity of targets (such as the brainstem and parotid) due to sharp dose distribution and reduced MUs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579899 | PMC |
http://dx.doi.org/10.3892/ol.2015.3523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!