Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, -methylpyrrolidone, dimethyl sulfoxide, -amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655819PMC
http://dx.doi.org/10.1021/op500328fDOI Listing

Publication Analysis

Top Keywords

organic solvents
16
limiting oxygen
8
temperatures pressures
8
oxygen
5
solvents
5
experimental limiting
4
oxygen concentrations
4
organic
4
concentrations organic
4
solvents temperatures
4

Similar Publications

Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly.

Angew Chem Int Ed Engl

January 2025

The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.

View Article and Find Full Text PDF

Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.

View Article and Find Full Text PDF

Control of Permanent Porosity in Type 3 Porous Liquids via Solvent Clustering.

ACS Appl Mater Interfaces

January 2025

Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.

Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.

View Article and Find Full Text PDF

Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell.

View Article and Find Full Text PDF

An overcrowded ethylene composed of electron-donating anion, naphthoxide, and electron-accepting cation, acridinium, has been synthesized. It is in equilibrium between a folded conformer having a smaller permanent dipole moment with visible light absorption and a twisted conformer having a larger permanent dipole moment with NIR light absorption. The overcrowded ethylene shows multiple NIR chromisms, such as solvatochromism, thermochromism, mechanochromism, vapochromism, halochromism, and amphoteric electrochromisms, which are caused by the conformational change between folded and twisted conformers or by controlling the energy difference between the HOMO of the donor moiety and the LUMO of the acceptor moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!