Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops. Many clubroot resistance genes and markers are available in Brassica rapa but less is known in Brassica oleracea. Here, we applied the genotyping-by-sequencing (GBS) technique to construct a high-resolution genetic map and identify clubroot resistance (CR) genes. A total of 43,821 SNPs were identified using GBS data for two parental lines, one resistant and one susceptible lines to clubroot, and 18,187 of them showed >5× coverage in the GBS data. Among those, 4,103 were credibly genotyped for all 78 F2 individual plants. These markers were clustered into nine linkage groups spanning 879.9 cM with an average interval of 1.15 cM. Quantitative trait loci (QTLs) survey based on three rounds of clubroot resistance tests using F2 : 3 progenies revealed two and single major QTLs for Race 2 and Race 9 of P. brassicae, respectively. The QTLs show similar locations to the previously reported CR loci for Race 4 in B. oleracea but are in different positions from any of the CR loci found in B. rapa. We utilized two reference genome sequences in this study. The high-resolution genetic map developed herein allowed us to reposition 37 and 2 misanchored scaffolds in the 02-12 and TO1000DH genome sequences, respectively. Our data also support additional positioning of two unanchored 3.3 Mb scaffolds into the 02-12 genome sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755525 | PMC |
http://dx.doi.org/10.1093/dnares/dsv034 | DOI Listing |
Mol Breed
December 2024
Yazhouwan National Laboratory, Sanya, 572025 Hainan China.
, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources.
View Article and Find Full Text PDFMicroorganisms
November 2024
Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.
The effect of crop rotation on soil-borne diseases is a representative case of plant-soil feedback in the sense that plant disease resistance is influenced by soils with different cultivation histories. This study examined the microbial mechanisms inducing the differences in the clubroot (caused by pathogen) damage of Chinese cabbage ( subsp. ) after the cultivation of different preceding crops.
View Article and Find Full Text PDFPhytopathology
November 2024
Chengdu, China;
Clubroot disease caused by the biotrophic pathogen , is one of the most serious threats to cruciferous crops production worldwide. is known for rapid adaptive evolution to overcome resistance in varieties. It is urgent to establish alternative management to control .
View Article and Find Full Text PDFSci Rep
October 2024
Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!