Lactose is produced in large amounts as a by-product from the dairy industry. This inexpensive disaccharide can be converted to more useful value-added products such as galacto-oligosaccharides (GOSs) by transgalactosylation reactions with retaining β-galactosidases (BGALs) being normally used for this purpose. Hydrolysis is always competing with the transglycosylation reaction, and hence, the yields of GOSs can be too low for industrial use. We have reported that a β-glucosidase from Halothermothrix orenii (HoBGLA) shows promising characteristics for lactose conversion and GOS synthesis. Here, we engineered HoBGLA to investigate the possibility to further improve lactose conversion and GOS production. Five variants that targeted the glycone (-1) and aglycone (+1) subsites (N222F, N294T, F417S, F417Y, and Y296F) were designed and expressed. All variants show significantly impaired catalytic activity with cellobiose and lactose as substrates. Particularly, F417S is hydrolytically crippled with cellobiose as substrate with a 1000-fold decrease in apparent k cat, but to a lesser extent affected when catalyzing hydrolysis of lactose (47-fold lower k cat). This large selective effect on cellobiose hydrolysis is manifested as a change in substrate selectivity from cellobiose to lactose. The least affected variant is F417Y, which retains the capacity to hydrolyze both cellobiose and lactose with the same relative substrate selectivity as the wild type, but with ~10-fold lower turnover numbers. Thin-layer chromatography results show that this effect is accompanied by synthesis of a particular GOS product in higher yields by Y296F and F417S compared with the other variants, whereas the variant F417Y produces a higher yield of total GOSs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803828PMC
http://dx.doi.org/10.1007/s00253-015-7118-8DOI Listing

Publication Analysis

Top Keywords

cellobiose lactose
12
halothermothrix orenii
8
lactose conversion
8
conversion gos
8
substrate selectivity
8
variant f417y
8
lactose
7
cellobiose
5
engineering thermostable
4
thermostable halothermothrix
4

Similar Publications

Different Effects of Deglycosylation on the Lactose Sensing Ability of Mesophilic and Thermophilic Cellobiose Dehydrogenases.

Appl Biochem Biotechnol

November 2024

Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, 250103, Shandong, China.

The development of an efficient lactose biosensor employing cellobiose dehydrogenases (CDHs) for monitoring and precise control of the lactose levels in dairy-based products is extremely important for the health of lactose-intolerant population. In this study, the mesophilic (Nc_CDH) and thermophilic (Ct_CDH-A, Ct_CDH-B) CDHs were successfully obtained by heterologous expression and treated with α-1,2-mannosidase and endoglycosidase H to prepare the deglycosylated forms (Nc_dCDH, Ct_dCDH-A, and Ct_dCDH-B); then, the effects of deglycosylation on the catalytic activity in solution and electrochemical performance on electrodes for lactose detection were systematically investigated. In solution, Nc_dCDH was more stable and had a higher V value and lower K value than Nc_CDH at different temperatures and pH values.

View Article and Find Full Text PDF

Herein, we describe the design and synthesis of 16 neo-glycolipids that are potential permeation enhancers for oral drug delivery of peptide therapeutics. These amphiphilic neo-glycolipids are composed of fatty acids and various carbohydrates (d-glucose, lactose, cellobiose, maltose) via an oxime linker. The ability of the synthesized neo-glycolipids to enhance permeation of fluorescein-labelled dextran (4 kDa) or H-mannitol across intestinal epithelium was investigated in vitro using monolayers of human epithelial Caco-2 cells.

View Article and Find Full Text PDF

Cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) can epimerize and isomerize lactose into epilactose and lactulose respectively. Competition between these reactions reactions has prompted the search for new enzymes to drive the reaction in one direction or the other. The isomerization and epimerization capacity of a novel mutant CsCE (CsCE H356N) was evaluated, obtaining a maximum lactulose yield of 64.

View Article and Find Full Text PDF

Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives.

View Article and Find Full Text PDF

Background: Cellobiose 2-epimerase (CE) has received great attention due to its potential applications in the food and pharmaceutical industries. In this study, a novel CE from mesophilic anaerobic halophilic bacterium Iocasia fonsfrigidae strain SP3-1 (IfCE) was successfully expressed in Escherichia coli and characterized.

Results: Unlike other CEs, the purified IfCE shows only epimerization activity toward β-1,4-glycosidic linkages of disaccharides, including mannobiose, cellobiose and lactose, but not for monosaccharides, β-1,4-glycosidic linkages of trisaccharides and α-1,4-glycosidic linkages of disaccharides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!