Purpose: The goal of this study was to investigate the feasibility of differentiating brain metastases from different types of lung cancers using texture analysis (TA) of T1 postcontrast MR images.

Methods: TA was performed, and four subset textures were extracted and calculated separately. The capability of each texture to classify the different types of lung carcinoma was investigated using the Kruskal-Wallis test and receiver operating characteristic analysis. K-nearest neighbor (KNN) classifier model and back-propagation artificial neural network (BP-ANN) classifier model were used to build models and improve the predictive ability of TA.

Results: Texture-based lesion classification was highly specific in differentiating brain metastases originated from different types of lung cancers, with misclassification rates of 3.1%, 4.3%, 5.8%, and 8.1%, respectively, for small cell lung carcinoma, squamous cell carcinoma, adenocarcinoma, and large cell lung carcinoma. The BP-ANN model had a better predictive ability than the KNN model. No texture feature could distinguish between all four types of lung cancer.

Conclusions: TA may predict the differences among various pathological types of lung cancer with brain metastases. The texture parameters, which reflect the tumor histopathology structure, may serve as an adjunct tool for clinically accurate diagnoses and deserves further investigation. Magn Reson Med 76:1410-1419, 2016. © 2015 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.26029DOI Listing

Publication Analysis

Top Keywords

types lung
24
brain metastases
16
differentiating brain
12
lung cancers
12
lung carcinoma
12
pathological types
8
lung
8
cancers texture
8
texture analysis
8
analysis postcontrast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!