Avian species are among the most diverse vertebrates on our planet and significantly contribute to the balance of the ecology. They are also important food source and serve as a central animal model to decipher developmental biology and disease principles. Derivation of induced pluripotent stem cells (iPSCs) from avian species would enable conservation of genetic diversity as well as offer a valuable cell source that facilitates the use of avian models in many areas of basic and applied research. In this chapter, we describe methods used to successfully reprogram quail fibroblasts into iPSCs by using human transcription factors and the techniques critical to the characterization of their pluripotency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2848-4_9 | DOI Listing |
Cytotechnology
February 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India.
Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.
View Article and Find Full Text PDFBio Protoc
December 2024
Department of Neurology, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However, the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site.
View Article and Find Full Text PDFWorld J Stem Cells
December 2024
Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases.
View Article and Find Full Text PDFInt J Stem Cells
December 2024
Catholic iPSCs Research Center, CiSTEM Laboratory, Department of Medical Sciences, Graduate School The Catholic University of Korea, Seoul, Korea.
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown.
View Article and Find Full Text PDFJ Mol Cell Cardiol
December 2024
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:
Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.
Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!