Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the dense cellular environment, protein misfolding and inter-molecular protein aggregation compete with protein folding. Chaperones associate with proteins to prevent misfolding and to assist in folding to the native state. In Escherichia coli, the chaperones trigger factor, DnaK/DnaJ/GrpE, and GroEL/ES are the major chaperones responsible for insuring proper de novo protein folding. With multitudes of proteins produced by the bacterium, the chaperones have to be selective for their substrates. Yet, chaperone selectivity cannot be too specific. Recent biochemical and high-throughput studies have provided important insights highlighting the strategies used by chaperones in maintaining proteostasis in the cell. Here, we discuss the substrate networks and cooperation among these protein folding chaperones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-23603-2_15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!