Theory of High-Spin d(4) Complexes: An Angular-Overlap Model Parametrization of the Ligand Field in Vibronic-Coupling Calculations.

J Chem Theory Comput

Laboratory for Neutron Scattering, PSI, CH-5232 Villigen, Switzerland, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Centre for Magnetic Resonance, The University of Queensland, Brisbane, Australia.

Published: April 2008

AI Article Synopsis

  • A new theoretical framework is introduced to calculate the electronic and molecular structures of octahedrally-coordinated high-spin d(4) complexes.
  • The method involves creating a (3)T1 + (5)E (O) Hamiltonian based on ligand-field matrices with trigonal symmetry, using the angular-overlap model for parameterization.
  • This model simplifies the analysis by eliminating the need for temperature-dependent bonding parameters found in traditional ligand-field theory, proving effective across various vibronic-coupling strengths through specific examples.

Article Abstract

A new theoretical approach for the calculation of the electronic and molecular structures of octahedrally-coordinated high-spin d(4) complexes is described. A prescription for the construction of an effective (3)T1 + (5)E (O) Hamiltonian from the ligand-field matrices of a complex with general trigonal symmetry is given, where the ligand field is parametrized in terms of the angular-overlap model (AOM). The Jahn-Teller matrices for the (3)T1 + ((5)E⊗e) vibronic Hamiltonian are constructed and the lowest eigenvalues are calculated by a numerical method. The model obviates the need to assume a temperature dependence of bonding parameters, inherent to the conventional ligand-field-theory approach and is applicable over the whole range of vibronic-coupling strengths, as demonstrated by example calculations on the [Mn(OD2)6](3+) cation and MgO:Cr(2+).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct7003484DOI Listing

Publication Analysis

Top Keywords

high-spin complexes
8
angular-overlap model
8
ligand field
8
theory high-spin
4
complexes angular-overlap
4
model parametrization
4
parametrization ligand
4
field vibronic-coupling
4
vibronic-coupling calculations
4
calculations theoretical
4

Similar Publications

A search for switchable molecules has afforded a family of cobalt complexes featuring derivatives of 2-aminophenol: 4,6-di--butyl aminophenol (HL) and 2-anilino-4,6-di--butyl aminophenol (HL). The heteroleptic cobalt complexes incorporate a Metpa ligand (tpa = tris(2-pyridylmethyl)amine; = 0-3), which involves the methylation of the 6-position of the pyridine ring). Eight members of this family have been synthesized and characterized: [Co(HL)(tpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(tpa)] (BPh)(ClO) (), [Co(L)(tpa)](BPh)(ClO) () and [Co(HL)(Metpa)](BPh) (), where the aminophenol-derived ligands are monoanionic in either the open shell radical iminosemiquinonate (L) or the closed shell protonated aminophenolate (HL).

View Article and Find Full Text PDF

Electrocatalytic HER Performance of [FeFe]-Hydrogenase Mimics Bearing M-salen Moieties (M=Zn, Ni, Fe, Mn).

Chemistry

December 2024

Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain.

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe(CO)] fragment and M-salen complexes (salen=N,N'-bis(salicylidene)ethylenediamine) (M=Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R=Fe(CO)(μ-SCH)NCOCHO]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.

View Article and Find Full Text PDF

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().

View Article and Find Full Text PDF

In this study, we present the first experimental determination of the spin state of transition metal complexes by using Hirshfeld Atom Refinement. For the demonstration, the two iron(II) complexes, (NH)Fe(SO) ⋅ 6 HO and lFe(pic)jCl ⋅ EtOH were investigated. The method involves the refinement using wavefunctions of different spin multiplicity and comparison against experimental diffraction data by means of refinement indicators and residual electron density.

View Article and Find Full Text PDF

Reversibly Modulating the Selectivity of Carbon Dioxide Reduction via Ligand-Driven Spin Crossover.

J Phys Chem Lett

January 2025

Department of Chemical Physics and Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

Selectivity is an essential aspect in catalysis. At present, the improvement of the selectivity for complex reactions with multiple pathways/products, for example the carbon dioxide reduction reaction (CORR), can usually be achieved for only one pathway/product. It is still a challenge to reversibly modulate the selectivity between two reaction pathways or products of the CORR by one catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!