Structural Basis of Reversible Phosphorylation by Maize Pyruvate Orthophosphate Dikinase Regulatory Protein.

Plant Physiol

State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China (L.J., J.Z., Zhenhang Chen, Y.L., W.W., Zhongzhou Chen);Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., B.-C.W.); andBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China (Y.T.)

Published: February 2016

Pyruvate orthophosphate dikinase (PPDK) is one of the most important enzymes in C4 photosynthesis. PPDK regulatory protein (PDRP) regulates the inorganic phosphate-dependent activation and ADP-dependent inactivation of PPDK by reversible phosphorylation. PDRP shares no significant sequence similarity with other protein kinases or phosphatases. To investigate the molecular mechanism by which PDRP carries out its dual and competing activities, we determined the crystal structure of PDRP from maize (Zea mays). PDRP forms a compact homo-dimer in which each protomer contains two separate N-terminal (NTD) and C-terminal (CTD) domains. The CTD includes several key elements for performing both phosphorylation and dephosphorylation activities: the phosphate binding loop (P-loop) for binding the ADP and inorganic phosphate substrates, residues Lys-274 and Lys-299 for neutralizing the negative charge, and residue Asp-277 for protonating and deprotonating the target Thr residue of PPDK to promote nucleophilic attack. Surprisingly, the NTD shares the same protein fold as the CTD and also includes a putative P-loop with AMP bound but lacking enzymatic activities. Structural analysis indicated that this loop may participate in the interaction with and regulation of PPDK. The NTD has conserved intramolecular and intermolecular disulfide bonds for PDRP dimerization. Moreover, PDRP is the first structure of the domain of unknown function 299 enzyme family reported. This study provides a structural basis for understanding the catalytic mechanism of PDRP and offers a foundation for the development of selective activators or inhibitors that may regulate photosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734583PMC
http://dx.doi.org/10.1104/pp.15.01709DOI Listing

Publication Analysis

Top Keywords

structural basis
8
reversible phosphorylation
8
pyruvate orthophosphate
8
orthophosphate dikinase
8
regulatory protein
8
pdrp
8
mechanism pdrp
8
ctd includes
8
ppdk
5
basis reversible
4

Similar Publications

Objective: To design a deep learning-based model for early screening of diabetic retinopathy, predict the condition, and provide interpretable justifications.

Methods: The experiment's model structure is designed based on the Vision Transformer architecture which was initiated in March 2023 and the first version was produced in July 2023 at Affiliated Hospital of Hangzhou Normal University. We use the publicly available EyePACS dataset as input to train the model.

View Article and Find Full Text PDF

Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.

View Article and Find Full Text PDF

Numerous studies have shown that hyperlipidaemia is closely related to the gut microbiota, and the study of microbiota in the treatment of hyperlipidaemia is undoubtedly a new target for the treatment and prevention of hyperlipidaemia. The efficacy of regulating the gut microecology and changing the structure of gut flora has been demonstrated by both western and traditional medication, biological therapy, and dietary exercise, so it is particularly important to study the relationship between gut microbiota and the treatment of hyperlipidaemia. In this review, we summarize the mechanism and relationship between the pathogenesis of hyperlipidaemia and gut microbiota, and the mechanism of hyperlipidaemia treatment by influencing the gut microbiota in various treatment modalities, which provides diversified therapeutic ideas and scientific basis for clinical treatment.

View Article and Find Full Text PDF

Extracting Thin Film Structures of Energy Materials Using Transformers.

ACS Phys Chem Au

January 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Neutron-Transformer Reflectometry Advanced Computation Engine (), a neural network model using a transformer architecture, is introduced for neutron reflectometry data analysis. It offers fast, accurate initial parameter estimations and efficient refinements, improving efficiency and precision for real-time data analysis of lithium-mediated nitrogen reduction for electrochemical ammonia synthesis, with relevance to other chemical transformations and batteries. Despite limitations in generalizing across systems, it shows promises for the use of transformers as the basis for models that could accelerate traditional approaches to modeling reflectometry data.

View Article and Find Full Text PDF

Corn stover was used as raw material, and purification, oxalic acid treatment, oxidation treatment, and ultrasonic treatment were performed to realize the preparation of corn stover nanocellulose with low energy consumption. The effects of oxalic acid concentration (1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%) on the purity, morphology, crystalline structure and oxidation efficiency of corn stover cellulose during oxalic acid treatment were investigated. The controllable preparation of corn stover nanocellulose was achieved by changing the parameter conditions of ultrasonic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!