Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules.

J Chem Theory Comput

Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280.

Published: December 2008

The highly parametrized, empirical exchange-correlation functionals, M05-2X and M06-2X, developed by Zhao and Truhlar have been shown to describe noncovalent interactions better than density functionals which are currently in common use. However, these methods have yet to be fully benchmarked for the types of interactions important in biomolecules. M05-2X and M06-2X are claimed to capture "medium-range" electron correlation; however, the "long-range" electron correlation neglected by these functionals can also be important in the binding of noncovalent complexes. Here we test M05-2X and M06-2X for the nucleic acid base pairs in the JSCH-2005 database. Using the CCSD(T) binding energies as a benchmark, the performance of these functionals is compared to that of a nonempirical density functional, PBE, and also to that of PBE plus Grimme's empirical dispersion correction, PBE-D. Due to the importance of "long-range" electron correlation in hydrogen-bonded and interstrand base pairs, PBE-D provides more accurate interaction energies on average for the JSCH-2005 database when compared to M05-2X or M06-2X. M06-2X does, however, perform somewhat better than PBE-D for interactions between stacked base pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct800308kDOI Listing

Publication Analysis

Top Keywords

m05-2x m06-2x
20
electron correlation
12
base pairs
12
exchange-correlation functionals
8
noncovalent interactions
8
interactions biomolecules
8
"long-range" electron
8
jsch-2005 database
8
m06-2x
6
m05-2x
5

Similar Publications

In this work, α-tocopherol and trolox were studied as compounds that have high biological activity. α-Tocopherol is considered a food additive because the refining process of vegetable oils causes the depletion of this vitamin, and thus, its inclusion is required to keep them from oxidizing. Computational tools have determined the antioxidant activity of these additives.

View Article and Find Full Text PDF

Benzodiazepines are frequently encountered in crime scenes, often mixed with adulterants and diluents, complicating their analysis. This study investigates the interactions between two benzodiazepines, lorazepam (LOR) and alprazolam (ALP), with common adulterants/diluents (paracetamol, caffeine, glucose, and lactose) using infrared (IR) spectroscopy and quantum chemical methods. The crystallographic structures of LOR and ALP were optimized using several functionals (B3LYP, B3LYP-D3BJ, B3PW91, CAM-B3LYP, M05-2X, and M06-2X) combined with the 6-311++G(d,p) basis set.

View Article and Find Full Text PDF

A density functional theory benchmark on antioxidant-related properties of polyphenols.

Phys Chem Chem Phys

March 2024

Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, 18290-000, Brazil.

In this work, we present a density functional theory benchmark on antioxidant-related properties for a series of six polyphenols that are well-known antioxidants: caffeic acid, cyanidin, ellagic acid, gallic acid, myricetin, and phloretin. Computations on the 24 O-H bond dissociation enthalpies (BDEs) and 6 ionization potentials (IPs) were performed using twenty-three exchange-correlation functionals combined with four different basis sets in the gas-phase, water, and methanol; calibration against the Domain-based Local Pair Natural Orbital CCSD(T) (DLPNO-CCSD(T)) approach was employed. Mean absolute deviation (MAD) as well as linear fitting results suggested the LC-PBE approach as the most suitable for O-H BDEs in the gas-phase.

View Article and Find Full Text PDF

Phenomenological description of the acidity of the citric acid and its deprotonated species: informational-theoretical study.

J Mol Model

July 2023

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Colonia Leyes de Reforma, 09310, Mexico City, México.

Context: In spite of the fact that molecular acidity is a fundamental physicochemical property of molecular systems, the vast majority of theoretical studies have focused attention on monoprotic acids and on the prediction of pKa's. Polyprotic acids, represent a challenge for electronic structure calculations since the multiple acidic sites result in a vast group of species with different conformations and reactivities. In this work, Information-theoretic (IT) concepts of localizability, order and uniformity are applied to the Citric Acid and its deprotonated species through the one-electron density functionals: Shannon entropy (S), Fisher information (I) and Disequilibrium (D), respectively.

View Article and Find Full Text PDF

Comparative study of the antioxidant capability of EDTA and Irganox.

Heliyon

May 2023

Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.

Oxidative stress makes it difficult to preserve food and negatively affect the applicability of polymeric packaging. It is typically caused by an excess of free radicals, and it is dangerous to human health, resulting in the onset and development of diseases. The antioxidant ability and activity of ethylenediaminetetraacetic acid (EDTA) and Irganox (Irg) as synthetic antioxidant additives were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!