Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-015-4096-7 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.
View Article and Find Full Text PDFBiopolymers
March 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.
The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.
View Article and Find Full Text PDFLife Metab
August 2024
Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2S2, Canada.
Small
January 2025
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!