Efficiency and Accuracy of the Generalized Solvent Boundary Potential for Hybrid QM/MM Simulations: Implementation for Semiempirical Hamiltonians.

J Chem Theory Comput

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

Published: October 2008

We report the implementation of the generalized solvent boundary potential (GSBP) [ Im , W. , Bernèche , S. , and Roux , B. J. Chem. Phys. 2001, 114, 2924 ] in the framework of semiempirical hybrid quantum mechanical/molecular mechanical (QM/MM) methods. Application of the GSBP is connected with a significant overhead that is dominated by numerical solutions of the Poisson-Boltzmann equation for continuous charge distributions. Three approaches are presented that accelerate computation of the values at the boundary of the simulation box and in the interior of the macromolecule and solvent. It is shown that these methods reduce the computational overhead of the GSBP significantly with only minimal loss of accuracy. The accuracy of the GSBP to represent long-range electrostatic interactions is assessed for an extensive set of its inherent parameters, and a set of optimal parameters is defined. On this basis, the overhead and the savings of the GSBP are quantified for model systems of different sizes in the range of 7000 to 40 000 atoms. We find that the savings compensate for the overhead in systems larger than 12 500 atoms. Beyond this system size, the GSBP reduces the computational cost significantly, by 70% and more for large systems (>25 000 atoms).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct800193aDOI Listing

Publication Analysis

Top Keywords

generalized solvent
8
solvent boundary
8
boundary potential
8
gsbp
6
efficiency accuracy
4
accuracy generalized
4
potential hybrid
4
hybrid qm/mm
4
qm/mm simulations
4
simulations implementation
4

Similar Publications

A two-step, biocompatible strategy enables site-specific generation of branched and macrocyclic peptide-protein conjugates. Solvent-exposed cysteines on proteins are modified by a small bifunctional reagent at near-physiological pH, followed by cyanopyridine-aminothiol click reactions to create branched or macrocyclic peptide architectures. This method offers design strategies for next-generation protein therapeutics.

View Article and Find Full Text PDF

Background: Primary hyperparathyroidism (pHPT) is the third most common endocrine system disorder. Parathyroidectomy (PTx) is the gold standard of care in symptomatic patients. Patients who are not surgical candidates may benefit from percutaneous ethanol ablation, which is a minimally invasive procedure.

View Article and Find Full Text PDF

Flavonoids, a group of natural pigments, have attracted notable attention for their intrinsic fluorescent bioactive properties and potential therapeutic implications. Recent studies have suggested that the photoexcitation of specific flavonoids can also lead to the formation of triplet states, thereby potentially enhancing their applications in photoactivated antioxidant mechanisms. However, the crucial mechanism details about triplet state formation are still poorly understood.

View Article and Find Full Text PDF

Butyl Imidates: Highly Stable and Isolable Synthetic Intermediates.

J Org Chem

January 2025

U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States.

Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations.

View Article and Find Full Text PDF

PRA-MutPred: Predicting the Effect of Point Mutations in Protein-RNA Complexes Using Structural Features.

J Chem Inf Model

January 2025

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.

Interactions between proteins and RNAs are essential for the proper functioning of cells, and mutations in these molecules may lead to diseases. These protein mutations alter the strength of interactions between the protein and RNA, generally described as binding affinity (Δ). Hence, the affinity change upon mutation (ΔΔ) is an important parameter for understanding the effect of mutations in protein-RNA complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!