Since its development in the 1960s, plant cryopreservation is considered an extraordinary method of safe long-term conservation of biological material, as it does not induce genetic alterations and preserve the regeneration potential of the stored material. It is based on the storage of explants at cryogenic temperatures, such as the one of liquid nitrogen (-196 °C), where the metabolism within the cells is suspended; thus, the time for these cells is theoretically "stopped". Cryopreservation is particularly important for embryogenic cultures, as they require periodic subculturing for their maintenance, and this, in turn, increases the risk of losing the material, as well as its embryogenic potential. Periodic re-initiation of embryogenic cultures is possible; however, it is labor intensive, expensive, and particularly difficult when working with species for which embryogenic explants are available only during a limited period of the year. Among various methods of cryopreservation available for embryogenic cultures, slow cooling is still the most common approach, especially in callus cultures from softwood species. This chapter briefly reviews the cryopreservation of embryogenic cultures in conifers and broadleaf trees, and describes as well a complete protocol of embryogenic callus cryopreservation from common ash tree (Fraxinus excelsior L.) by slow cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3061-6_32 | DOI Listing |
Curr Issues Mol Biol
December 2024
Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil.
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout.
View Article and Find Full Text PDFBiol Methods Protoc
December 2024
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia.
In this protocol for obtaining doubled haploids plants (DH), we propose a new method for microspore isolation. This method is useful for genotypes of the Brassicaceae family with low responsiveness to DH technology. For such crops, it allows increasing the embryo yield several times and sometimes obtaining embryos for the first time.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
Background: Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Recerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine ( spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method.
View Article and Find Full Text PDFBioTech (Basel)
November 2024
Department of Plant Sciences, University of California, Davis, CA 95616, USA.
Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!