UNLEASH THE POTENTIAL OF COMMUNITY HEALTH.

Health Serv J

Published: January 2016

Download full-text PDF

Source

Publication Analysis

Top Keywords

unleash potential
4
potential community
4
community health
4
unleash
1
community
1
health
1

Similar Publications

Unleashing the potency of multi-segmental DCIA flap in mandibular reconstruction with the aid of virtual surgery- A retrospective cohort study.

J Craniomaxillofac Surg

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Although the deep circumflex iliac artery (DCIA) flap is a mainstay in mandibular reconstruction, its multi-segmental utilization is infrequently reported, primarily due to concerns regarding the variable cutaneous component and potentially inadequate vascular supply to multi-block segments. This retrospective study analyzed the outcomes of 86 patients undergoing mandibular reconstruction with multi-segmental DCIA flaps, compared to 167 patients who received conventional single-segmental flaps. The survival rate for multi-segmental flaps was comparable to that of single-segmental flaps (100% vs.

View Article and Find Full Text PDF

Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification.

Sensors (Basel)

January 2025

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Domain-generalizable re-identification (DG Re-ID) aims to train a model on one or more source domains and evaluate its performance on unseen target domains, a task that has attracted growing attention due to its practical relevance. While numerous methods have been proposed, most rely on discriminative or contrastive learning frameworks to learn generalizable feature representations. However, these approaches often fail to mitigate shortcut learning, leading to suboptimal performance.

View Article and Find Full Text PDF

Since its discovery, IL-1β has taken center stage as a key mediator of a very broad spectrum of diseases revolving around immuno-mediated and inflammatory events. Predictably, the pleiotropic nature of this cytokine in human pathology has led to the development of targeted therapeutics with multiple treatment indications in the clinic. Following the accumulated findings of IL-1β's central modulatory role in the immune system and the implication of inflammatory pathways in cancer, the use of IL-1β antagonists was first proposed and then also pursued for oncology disorders.

View Article and Find Full Text PDF

RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation.

View Article and Find Full Text PDF

Blockade of TIPE2-Mediated Ferroptosis of Myeloid-Derived Suppressor Cells Achieves the Full Potential of Combinatory Ferroptosis and Anti-PD-L1 Cancer Immunotherapy.

Cells

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Although immune checkpoint blockade (ICB) therapy has attained unprecedented clinical success, the tolerance and immune suppression mechanisms evolved by tumor cells and their tumor microenvironment (TME) hinder its maximum anti-cancer potential. Ferroptosis therapy can partially improve the efficacy of ICB, but it is still subject to immune suppression by myeloid-derived suppressor cells (MDSCs) in the TME. Recent research suggests that an MDSC blockade can unleash the full therapeutic potential of the combined therapy of ferroptosis and ICB in liver cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!