Neuroblastoma cells were synchronized by a combined isoleucine plus glutamine starvation. Adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] was measured under basal conditions and in the presence of dopamine, adenosine and prostaglandin (PG) E1. A clear dissociation occurred between the respective evolution patterns of basal and agonist-stimulated adenylate cyclase activities. The magnitudes of the enzyme response to PGE1, adenosine, and dopamine also exhibited different evolution patterns during the cell cycle. Evolution of adenylate cyclase responsiveness to PGE1 during the cell cycle exhibited striking similarities with the intracellular 3':5'-cyclic AMP changes observed elsewhere. Use of theophylline and fluphenazine as specific inhibitors of adenosine and dopamine, respectively, made it possible to demonstrate that adenosine, dopamine, and PGE1 stimulated adenylate cyclase through independent receptor sites. Furthermore, whatever the stage of the cell cycle, responses to these three agonists were not additive, indicating that the receptors of adenosine, dopamine, and PGE1 control the same adenylate cyclase moieties. The data suggest that adenylate cyclase cell content and enzyme responsiveness to specific agonists can be independently controlled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC430833 | PMC |
http://dx.doi.org/10.1073/pnas.74.4.1575 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!