Protein microbubbles are air bubbles with a network of interacting proteins at the air-water interface. Protein microbubbles are commonly used in medical diagnostic and therapeutic research. They have also recently gained interest in the research area of food as they can be used as structural elements to control texture, allowing for the manufacture of healthier foods with increased consumer perception. For the application of microbubbles in the food industry, it is important to gain insights into their stability under food processing conditions. In this study, we tested the stability of protein microbubbles against heating and pressurization. Microbubbles could be heated to 50 °C for 2 min or pressurized to 100 kPa overpressure for 15 s without significantly affecting their stability. At higher pressures and temperatures, the microbubbles became unstable and buckled. Buckling was observed above a critical pressure and was influenced by the shell modulus. The addition of cross-linkers like glutaraldehyde and tannic acid resulted in microbubbles that were stable against all tested temperatures and overpressures, more specifically, up to 120 °C and 470 kPa, respectively. We found a relation between the storage temperatures of microbubble dispersions (4, 10, 15, and 21 °C) and a decrease in the number of microbubbles with the highest decrease at the highest storage temperature. The average rupture time of microbubbles stored at different storage temperatures followed an Arrhenius relation with an activation energy for rupture of the shell of approximately 27 kT. This strength ensures applicability of microbubbles in food processes only at moderate temperatures and storage for a moderate period of time. After the proteins in the shell are cross-linked, the microbubbles can withstand pressures and temperatures that are representative of food processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b08527 | DOI Listing |
Mol Ther
January 2025
Department of Biology, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada. Electronic address:
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P × receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States. Electronic address:
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS-BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are only beginning to be understood.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas. Electronic address:
The creation of innovative ultrasound contrast agents (UCAs) with the ability to monitor oxygen levels in real-time holds immense potential for advancing early diagnosis of various medical conditions such as hypoxic/reperfusion injury. In this study, we propose the development of oxygen sensitive UCAs using microbubbles composed of hemoglobin (HbMBs), which can function as sensors for blood oxygen levels. Previously, we performed a study highlighting the initial proof-of-concept efficacy of air-filled HbMBs in detecting oxygenation changes in vitro, offering a promising tool for clinically detecting tissue hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!