Describing and analyzing heart multiphysics requires the acquisition and fusion of multisensor cardiac images. Multisensor image fusion enables a combined analysis of these heterogeneous modalities. We propose to register intra-patient multiview 2D+t ultrasound (US) images with multiview late gadolinium-enhanced (LGE) images acquired during cardiac magnetic resonance imaging (MRI), in order to fuse mechanical and tissue state information. The proposed procedure registers both US and LGE to cine MRI. The correction of slice misalignment and the rigid registration of multiview LGE and cine MRI are studied, to select the most appropriate similarity measure. It showed that mutual information performs the best for LGE slice misalignment correction and for LGE and cine registration. Concerning US registration, dynamic endocardial contours resulting from speckle tracking echocardiography were exploited in a geometry-based dynamic registration. We propose the use of an adapted dynamic time warping procedure to synchronize cardiac dynamics in multiview US and cine MRI. The registration of US and LGE MRI was evaluated on a dataset of patients with hypertrophic cardiomyopathy. A visual assessment of 330 left ventricular regions from US images of 28 patients resulted in 92.7% of regions successfully aligned with cardiac structures in LGE. Successfully-aligned regions were then used to evaluate the abilities of strain indicators to predict the presence of fibrosis. Longitudinal peak-strain and peak-delay of aligned left ventricular regions were computed from corresponding regional strain curves from US. The Mann-Withney test proved that the expected values of these indicators change between the populations of regions with and without fibrosis (p < 0.01). ROC curves otherwise proved that the presence of fibrosis is one factor amongst others which modifies longitudinal peak-strain and peak-delay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2015.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!