Inkjet printed ambipolar transistors and circuits with high operational stability are demonstrated on flexible and rigid substrates employing semiconducting single-walled carbon nanotubes (SWCNTs). All patterns, which include electrodes, semiconductors, and vias, are realized by inkjet printing without the use of rigid physical masks and photolithography. An Al2O3 layer deposited on devices by atomic layer deposition (ALD) transforms p-type SWCNT thin-film transistors (TFTs) into ambipolar SWCNT TFTs and encapsulates them effectively. The ambipolar SWCNT TFTs have balanced electron and hole mobilities, which facilitates their use in multicomponent circuits. For example, a variety of logic gates and ring oscillators are demonstrated based on the ambipolar TFTs. The three-stage ring oscillator operates continuously for longer than 80 h under ambient conditions with only slight deviations in oscillation frequency. The successful demonstration of ambipolar devices by inkjet printing will enable a new class of circuits that utilize n-channel, p-channel, and ambipolar circuit components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b07727 | DOI Listing |
Int J Pharm
January 2025
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2100 Copenhagen, Denmark. Electronic address:
Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.
View Article and Find Full Text PDFBiofabrication
January 2025
Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Str.9-11, Oldenburg, 26129, GERMANY.
Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless modus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.
This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!