Polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules. The brush-like architecture expands the diameter of the polymer chains, diluting their entanglements without markedly increasing stiffness. This adjustable interplay between chain diameter and stiffness makes it possible to tailor the network's elastic modulus and extensibility without the complications associated with a swollen gel. The bottlebrush melts and elastomers exhibit an unprecedented combination of low modulus (∼100 Pa), high strain at break (∼1,000%), and extraordinary elasticity, properties that are on par with those of designer gels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat4508DOI Listing

Publication Analysis

Top Keywords

solvent-free supersoft
8
supersoft superelastic
8
bottlebrush melts
8
melts networks
8
superelastic bottlebrush
4
networks polymer
4
polymer gels
4
gels viable
4
viable class
4
class synthetic
4

Similar Publications

Due to their unique rheological and mechanical properties, bottlebrush polymers are inimitable components of biological and synthetic systems such as cartilage and ultrasoft elastomers. However, while their rheological properties can be precisely controlled through their macromolecular structures, the current chemical spectrum available is limited to a handful of synthetic polymers with aliphatic carbon backbones. Herein we design and synthesize a series of inorganic bottlebrush polymers based on a unique combination of polydimethylsiloxane (PDMS) and polyphosphazene (PPz) chemistry.

View Article and Find Full Text PDF

We report on a new class of magnetoactive elastomers (MAEs) based on bottlebrush polymer networks filled with carbonyl iron microparticles. By synergistically combining solvent-free, yet supersoft polymer matrices, with magnetic microparticles, we enable the design of composites that not only mimic the mechanical behavior of various biological tissues but also permit contactless regulation of this behavior by external magnetic fields. While the bottlebrush architecture allows to finely tune the matrix elastic modulus and strain-stiffening, the magnetically aligned microparticles generate a 3-order increase in shear modulus accompanied by a switch from a viscoelastic to elastic regime as evidenced by a ca.

View Article and Find Full Text PDF

Supersoft Elastic Bottlebrush Microspheres with Stimuli-Responsive Color-Changing Properties in Brine.

Langmuir

June 2021

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.

Solvent-free supersoft elastomer is highly desirable for building photonic structures with significant stimuli-responsive color changes. We report supersoft elastic porous microspheres with vivid structural colors obtained via self-assembly of amphiphilic bottlebrush block copolymers at the water/oil interface templated by ordered water-in-oil-in-water double emulsions. The porous structure is composed of cross-linked bottlebrush polydimethylsiloxane (PDMS) as the supersoft elastic skeleton and bottlebrush poly(ethylene oxide) (PEO) as the internal responsive layer.

View Article and Find Full Text PDF

Super-soft elastomers derived from bottlebrush polymers show promise as advanced materials for biomimetic tissue and device applications, but current processing strategies are restricted to simple molding. Here, we introduce a design concept that enables the three-dimensional (3D) printing of super-soft and solvent-free bottlebrush elastomers at room temperature. The key advance is a class of inks comprising statistical bottlebrush polymers that self-assemble into well-ordered body-centered cubic sphere phases.

View Article and Find Full Text PDF

Efficient removal of particulates from a rough surface with a soft material through a "press and peel" method (i.e., an adhesion and release approach) depends on good conformal contact at the interface; a material should be sufficiently soft to maximize contact with a particle while also conforming to rough surface features to clean the entire substrate surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!