Glycosaminoglycans (GAGs) chondroitin sulfate, heparin, hyaluronan, and sulfated hyaluronan are lower and higher thiolated to enable a one-step covalent modification of gold or vinyl-terminated surfaces. Measurements of water contact angle and zeta potentials reveal that sulfated GAG-modified surfaces are more wettable and possess a negative surface potential. Additionally, higher thiolated GAGs (tGAGs) exhibit increased wettability and higher surface roughness. Fibronectin (FN) adsorption increases with sulfation degree of tGAGs. The tGAG-functionalized surfaces with higher degree of sulfation promote fibroblast adhesion most under serum-free conditions. The preadsorption of FN allows for more cell adhesion on tGAG surfaces. Metabolic activity measurements show that cell growth is enhanced for tGAGs up to a certain thiolation degree. Overall, thiolation of GAGs does not hamper their bioactivity toward proteins and cells, which make them highly interesting for biomimetic surface modification of implants and tissue engineering scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201500276 | DOI Listing |
Acta Biomater
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Macrophages can determine the ultimate outcome of the foreign body reaction (FBR). Although researchers confirmed that differences in the elemental composition of the implant interface can lead to varying levels of biological function, the mechanism underlying the polarization directions of macrophages induced by varying oxygen proportions remains unclear. This research presented the fabrication of a deoxygenated hydroxyapatite (dHAP) surface to investigate the impact of oxygen content on macrophage activation.
View Article and Find Full Text PDFInt J Nanomedicine
October 2024
Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, People's Republic of China.
Background: Large-diameter titanium dioxide nanotubes (TNTs) have shown promise in preserving osteoblast function under oxidative stress (OS) in vitro. However, their ability to enhance osteogenesis in vivo under OS conditions and the underlying mechanisms remain unclear.
Purpose: This study aimed to evaluate the osteogenic potential of 110 nm TNTs (TNT110) compared to 30 nm TNTs (TNT30) in an aging rat model exhibiting OS, and to investigate the mechanisms involved.
Molecules
October 2024
Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada.
An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress.
View Article and Find Full Text PDFJ Funct Biomater
August 2024
The Scientific and Technological Research Council of Turkey, Life Sciences Medical Biotechnology Unit, Marmara Research Centre, Kocaeli 41470, Turkey.
Titanium-Niobium (TiNb) alloys are commonly employed in a number of implantable devices, yet concerns exist regarding their use in implantology owing to the biomechanical mismatch between the implant and the host tissue. Therefore, to balance the mechanical performance of the load-bearing implant with bone, TiNb alloys with differing porosities were fabricated by powder metallurgy combined with spacer material. Microstructures and phase constituents were characterized with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD).
View Article and Find Full Text PDFInt J Artif Organs
October 2024
Asahi Kasei Medical Co., Ltd., Japan.
Background: We investigated whether the condition of the inner surface of hollow fibers affects the blood compatibility of hemodialyzers.
Methods: We used scanning probe microscope/atomic force microscopy (SPM/AFM) to investigate the height of the swelling and flexible layers (thickness and softness) on the inner surfaces of the hollow fibers. Next, we tested the blood compatibility between dialyzers comprising a hollow fiber membrane, in which the other dialyzers, except for PVP, were additionally coated using PS membranes coated with other materials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!