Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC) showing CpG island methylator phenotype (CIMP). Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated). Cell lines were of epithelial origin (EpCAM+) with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan). Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib). This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo-) therapeutics helps bringing forward the concept of personalized tumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664421PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143194PLOS

Publication Analysis

Top Keywords

tp53 mut
16
marker methylated
16
tumor models
12
cell lines
12
mut kras
12
kras mut
12
mut
9
freshly established
8
cpg island
8
island methylator
8

Similar Publications

Background: Gliomas are a major cause of cancer-related death among children, adolescents, and young adults (age 0-40 years). Primary mismatch repair deficiency (MMRD) is a pan-cancer mechanism with unique biology and therapeutic opportunities. We aimed to determine the extent and impact of primary MMRD in gliomas among children, adolescents, and young adults.

View Article and Find Full Text PDF

MDM2 up-regulates the energy metabolism in NSCLC in a p53-independent manner.

Biochem Biophys Res Commun

January 2025

Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia. Electronic address:

Although an E3 ligase MDM2 is the major negative regulator of the p53 tumor suppressor, a growing body of evidence suggests its p53-independent oncogenic properties. In particular, MDM2 has been shown to regulate serine metabolism independently of p53 status in several types of neoplasia, including NSCLC. Using the GSEA approach and publicly available molecular data on NSCLC tumors, our bioinformatics data suggest that MDM2 affects a number of metabolic genes, particularly those encoding components of the electron transport chain (ETC).

View Article and Find Full Text PDF

Comprehensive studies of the genetic profiles of cutaneous squamous cell carcinoma (cSCC) in Japanese patients have been lacking, although an understanding of these profiles is crucial for improving treatment outcomes. Since 2019, comprehensive genomic profiling (CGP) has been covered by Japan's health insurance, and the resulting data have been compiled into a comprehensive database by the country's Center for Cancer Genomics and Advanced Therapeutics (C-CAT). In this retrospective study, we used CGP data from the C-CAT database to analyze genomic characteristics of cSCC in Japanese patients.

View Article and Find Full Text PDF

Patients with newly diagnosed acute myeloid leukemia (ND-AML) derive variable survival benefit from venetoclax + hypomethylating agent (Ven-HMA) therapy. The primary objective in the current study was to develop genetic risk models that are predictive of survival and are applicable at the time of diagnosis and after establishing treatment response. Among 400 ND-AML patients treated with Ven-HMA at the Mayo Clinic, 247 (62%) achieved complete remission with (CR) or without (CRi) count recovery.

View Article and Find Full Text PDF

Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.

Neurosci Bull

December 2024

Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.

Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!