The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8-12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7-9 Hz) during passive state. During active state, there was a reduction in alpha power density (8-12 Hz) and an increase of power density at slow frequencies (1-4 Hz). Relative EMG activity was related to EEG power density at 2-4 Hz (positive correlation) and at 8-12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664384PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143719PLOS

Publication Analysis

Top Keywords

power density
20
passive state
16
gray mouse
16
alpha rhythms
12
active state
12
mouse lemurs
12
locomotor activity
12
eeg power
12
frontal alpha
8
model translational
8

Similar Publications

Objective: to assess the impact of stressful life events occuring with the period of restrictive measures introductionconnected to the COVID-19 pandemic and during the full-scale Russian aggression, on the anthropometric indicators and body composition of children aged 10-17 years.

Materials And Methods: The research group consisted of 56 boys and 70 girls aged 10-17 years who lived in radioactively contaminated areas of Zhytomyr, Rivne, and Kyiv regions with a soil contamination density of 137Cs from 18 kBq/m2 to 235 kBq/m2. The impact of stressful factors was assessed using the stress perception scale (PSS-10).

View Article and Find Full Text PDF

Introduction: This study aims to determine if intraoral 850 nm LED irradiation could reduce the duration of lower anterior crowding alignment.

Methods: In a parallel-designed, randomized controlled clinical trial 60 patients with 2 to 6 mm of lower incisor crowding who need non-extraction treatment, were randomly assigned to the intervention and control groups by block randomization (36 females, 24 males, mean age: 19.93 ± 3.

View Article and Find Full Text PDF

Breaking Solvation Dominance Effect Enabled by Ion-Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries.

Nanomicro Lett

December 2024

State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.

Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion-dipole interaction between lithium ions (Li) and succinonitrile (SN).

View Article and Find Full Text PDF

Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.

View Article and Find Full Text PDF

Background: The body composition of National Collegiate Athletic Association (NCAA) athletes is well documented but no such data exist for university club sports athletes. Additionally, the majority of norms for NCAA athletes were created from individual methods requiring assumptions.

Objective: This study used a four-component (4C) model to measure the body composition of university club sports athletes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!