The relationship between CYP17A1 genetic polymorphisms and essential hypertension (EH) remains unclear. The aim of this study was to investigate the association of CYP17A1 genetic polymorphisms with EH in Han and Uighur populations in China. A Han population including 558 people (270 EH patients and 288 controls) and a Uighur population including 473 people (181 EH patients and 292 controls) were selected. Five single-nucleotide polymorphisms (SNPs) (rs4919686, rs1004467, rs4919687, rs10786712, and rs2486758) were genotyped using real-time PCR (TaqMan). In the Uighur population, for the total and the men, rs4919686, rs4919687 and rs10786712 were found to be associated with EH (rs4919686: P≤0.02, rs4919687: P≤0.002, rs10786712: P≤0.004, respectively). The difference remained statistically significant after the multivariate adjustment (all P<0.05). The overall distributions of the haplotypes established by SNP1-SNP3, SNP1-SNP4, SNP1-SNP3-SNP5 and SNP1-SNP4-SNP5 were significantly different between the EH patients and the control subjects (for the total: P=0.013, P=0.008, P=0.032, P=0.010, for men: P<0.001, P=0.001, P=0.010, P=0.00). In the Han population, for men, rs2486758 was found to be associated with EH in a recessive model (P=0.007); the significant difference was not retained after the adjustment for the covariates (date not shown). The A allele of rs4919686 could be a susceptible genetic marker, and the T allele of rs10786712 could be a protective genetic marker of EH. The AC genotype of rs4919686, the AG genotype of rs4919687 and the TT genotype of rs10786712 could be protective genetic markers of EH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657820PMC
http://dx.doi.org/10.14336/AD.2015.0505DOI Listing

Publication Analysis

Top Keywords

cyp17a1 genetic
12
relationship cyp17a1
8
essential hypertension
8
genetic polymorphisms
8
population including
8
uighur population
8
rs4919687 rs10786712
8
genetic polymorphism
4
polymorphism essential
4
hypertension chinese
4

Similar Publications

Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells which are active during fetal life and adult Leydig cells that are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the genetic etiology in an infertile patient presenting with consistently elevated progesterone levels.

Methods: Genomic DNA was extracted from the patient's blood sample and subjected to whole-genome sequencing (NGS) using the Illumina NovaSeq platform. Bioinformatic analyses were conducted to identify single nucleotide variants (SNVs) and insertion-deletion mutations (Indels) potentially associated with the patient's clinical phenotype.

View Article and Find Full Text PDF

Molecular characterization of archival adrenal tumor tissue from patients with ACTH-independent Cushing syndrome.

J Steroid Biochem Mol Biol

December 2024

Department of Pathology, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States.

Cushing syndrome represents a multitude of signs and symptoms associated with long-term and excessive exposure to glucocorticoids. Solitary cortisol-producing adenomas (CPAs) account for most cases of ACTH-independent Cushing syndrome (CS). Technological advances in next-generation sequencing have significantly increased our understanding about the genetic landscape of CPAs.

View Article and Find Full Text PDF

Characterization of Feeding Behaviors, Appetite Regulation and Growth Performance of All-Female (+/-;XX Genotype) Common Carp ().

Int J Mol Sci

November 2024

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.

Genome editing has the potential to improve growth and traits of aquatic animals. Assessment of the feeding habits of the genetically modified farmed fish is necessary, as this is closely related to the assessment of their growth performance, which is one of the most important economic traits. Previously, we developed a novel strategy to produce all-female (AF) common carp (+/-;XX genotype) with genome editing, which exhibited a growth advantage compared to the control carp (including control male and female carp).

View Article and Find Full Text PDF

Men experience Leydig cell and mitochondrial dysfunction due to the accumulation of reactive oxygen species during aging, leading to hormonal imbalances in the body. This results in symptoms of testosterone deficiency syndrome (TDS) as testosterone levels decline. Consequently, there is a growing need for alternative therapies, such as phytotherapy, to regulate testosterone secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!