The Dissociated Amorphous Silica Surface: Model Development and Evaluation.

J Chem Theory Comput

Biophysics Program, and Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States.

Published: November 2010

At pH 7, amorphous silica has a characteristic negative charge due to the deprotonation of silanol groups on the surface. Electrokinetic phenomena and transport of biomolecules in devices depend sensitively on the surface morphology, distribution of ions and solvent, and adsorption properties of solutes close to the surface in the electrical double layer region. Hence, simulation of these phenomena requires detailed atomistic models of the double layer region. In this Article, we extend our undissociated silica surface model [J. Phys. Chem. B 2007, 111, 11181-11193] to include dissociated Si-O(-) groups, which interact with both water and salt (Na(+) and Cl(-)). We have also conducted ab initio molecular dynamics (AIMD) simulations of a smaller system consisting of a hydrated silica slab. The radial distribution functions predicted by the empirical model are in qualitative agreement with those from the AIMD simulations. The hydrophobic and hydrophilic nature of silanol-poor and silanol-rich regions of the amorphous silica surface observed in our empirical model is reproduced in the AIMD simulations of the smaller slab. In the initial stages of our AIMD simulations, we observe various chemical processes that represent different hydroxylation mechanisms of the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct100260zDOI Listing

Publication Analysis

Top Keywords

aimd simulations
16
amorphous silica
12
silica surface
12
surface model
8
double layer
8
layer region
8
simulations smaller
8
empirical model
8
surface
7
silica
5

Similar Publications

Hydrogen sulfide (HS), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS).

View Article and Find Full Text PDF

PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs have optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure.

View Article and Find Full Text PDF

Short-time collective dynamics of an ionic liquid: A computer simulation study with non-polarizable and polarizable models, and ab initio molecular dynamics.

J Chem Phys

December 2024

Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.

Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes.

View Article and Find Full Text PDF

Spurred by the latest developments and growing utilization of zero-dimensional (0D) drug delivery and drug sensors, this investigation examines the possibilities of the 0D C fullerene for drug delivery and the detection of the anticancer drug chlormethine (CHL), the overabundance of which poses a significant threat to living organisms. This study employs density functional theory and ab initio molecular dynamics (AIMD) simulations (AIMD) to evaluate and gain insights into the interaction mechanisms between pristine C fullerene, metal-metalloid (MM)-modified C fullerene (with Al, Fe, and B), and the anticancer drug CHL. It is observed that in the gas phase, the CHL drug molecule adsorbs onto the fullerenes in the following order: B-C > Fe-C > Al-C > C.

View Article and Find Full Text PDF

Competitive adsorption of arsenate and phosphate on hematite facets: Molecular insights for enhanced arsenic retention.

Water Res

December 2024

State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.

Understanding the competition for adsorption between arsenate and other common oxyanions at mineral-water interfaces is critical for enhancing arsenate retention in the subsurface environment and mitigating exposure risks. This study investigated the competitive adsorption between arsenate and phosphate on hematite facets using batch experiments, together with in-situ infrared spectroscopy, two-dimensional correlation spectroscopy (2D-COS), and ab initio molecular dynamic (AIMD) simulations. This study's findings revealed that hematite exhibited notable selectivity for arsenate over phosphate in both adsorption capacity and rate, with selectivity significantly influenced by the exposed facets of the hematite and reaction concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!