Sarcomas are mesenchymal tumors characterized by blocked differentiation process. In Ewing sarcoma (EWS) both CD99 and EWS-FLI1 concur to oncogenesis and inhibition of differentiation. Here, we demonstrate that uncoupling CD99 from EWS-FLI1 by silencing the former, nuclear factor-κB (NF-κB) signaling is inhibited and the neural differentiation program is re-established. NF-κB inhibition passes through miR-34a-mediated repression of Notch pathway. CD99 counteracts EWS-FLI1 in controlling NF-κB signaling through the miR-34a, which is increased and secreted into exosomes released by CD99-silenced EWS cells. Delivery of exosomes from CD99-silenced cells was sufficient to induce neural differentiation in recipient EWS cells through miR-34a inhibition of Notch-NF-κB signaling. Notably, even the partial delivery of CD99 small interfering RNA may have a broad effect on the entire tumor cell population owing to the spread operated by their miR-34a-enriched exosomes, a feature opening to a new therapeutic option.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967355 | PMC |
http://dx.doi.org/10.1038/onc.2015.463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!