A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics.

J Chem Theory Comput

Department of Chemical and Biological Engineering, Department of Materials Science and Engineering, and Department of Chemistry, Northwestern University, Evanston Illinois 60201.

Published: October 2010

We report a GPU implementation in HOOMD Blue of long-range electrostatic interactions based on the orientation-averaged Ewald sum scheme, introduced by Yakub and Ronchi (J. Chem. Phys. 2003, 119, 11556). The performance of the method is compared to an optimized CPU version of the traditional Ewald sum available in LAMMPS, in the molecular dynamics of electrolytes. Our GPU implementation is significantly faster than the CPU implementation of the Ewald method for small to a sizable number of particles (∼10(5)). Thermodynamic and structural properties of monovalent and divalent hydrated salts in the bulk are calculated for a wide range of ionic concentrations. An excellent agreement between the two methods was found at the level of electrostatic energy, heat capacity, radial distribution functions, and integrated charge of the electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct100365cDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
gpu implementation
8
ewald sum
8
graphics processing
4
processing unit
4
implementation
4
unit implementation
4
implementation coulomb
4
coulomb interaction
4
interaction molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!