Background: "Green" haemodialysis management to reduce the environmental impact of haemodialysis is growing.
Objectives: Dealing with hazardous waste production could heighten healthcare professionals' awareness of this problem, and improve their healthcare involvement in environmental sustainability and environmental-friendliness.
Design And Measurements: A list of for-profit outpatient haemodialysis centres in the Valencian Community (E Spain) was compiled. Data on their hazardous waste production from 2008 to 2012 through the annual waste reports issued by official organisations competent in environmental issues were collected.
Results: There are 22 for-profit dialysis centres, that managed the treatment for 69.1% of all dialysis patients in the region. Data were collected from 16 centres that collectively offer 350 dialysis places (33.8% of all the places in this region). Mean annual hazardous waste production per dialysis session increased by 14% during the study period: 0.640 kg per session in 2008 vs. 0.740 kg in 2012.
Discussion And Conclusions: As hazardous waste production is high, we must examine the reasons why it is growing. Information about haemodialysis waste production and management is scarce and difficult to access. Having an evaluation of its production would motivate further research, especially as end-stage kidney disease is increasing, and whose main long-term treatment, haemodialysis, produces hazardous waste and employs substantial natural resources. Minimising its environmental impact is not mission impossible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jorc.12143 | DOI Listing |
Langmuir
January 2025
Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.
View Article and Find Full Text PDFWater Res
January 2025
Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:
High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).
View Article and Find Full Text PDFRSC Adv
January 2025
Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374.
In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:
Electrocatalytic NO reduction (NORR) to NH represents a promising approach for converting hazardous NO waste gases into high-value NH products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM/GDY) as potential single-cluster catalysts for high-performance NORR.
View Article and Find Full Text PDFToxics
December 2024
College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of various phosphate-based binders (NaPO, NaHPO, NaHPO), in addition to ordinary Portland cement (OPC), MgO, and CaO, for the stabilization of multi-metal-contaminated soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!