Background: Manganese super oxide dismutase (MnSOD) has been previously identified as one of the top regulated genes associated with poor survival in glioblastoma (GBM) patients. In the current study we have evaluated the protein expression of MnSOD across various grades of astrocytoma, studied its influence on survival of GBM patients and following recurrence.

Methods: The protein expression of MnSOD was analyzed on tumor tissue sections by immunohistochemistry on 30 diffuse astrocytomas (DA), 50 anaplastic astrocytomas (AA), 30 paired (primary and recurrent) GBM samples and 30 non-tumor brain tissues. The protein expression among the different grades of diffusely infiltrating astrocytoma (DIA) was evaluated by Kruskal-Wallis one-way ANOVA followed by post hoc test. Wilcoxon matched pair test was employed to assess MnSOD protein expression across 30 paired GBM samples (primary and recurrent). The prognostic impact of MnSOD protein expression individually and following stratification with p53 expression was evaluated in a cohort of 123 GBM patients. Both over-all survival (OS) and progression free survival (PFS) analysis were performed by employing Cox regression analysis and Kaplan-Meier survival analysis on GBM patients.

Results: A significantly increased protein expression of MnSOD was observed among malignant astrocytomas (GBM and AA) in comparison with either DA or non-tumor brain tissues (p<0.05). Among the GBM cases it was noted that the IDH1 immunopositive tumors (R132H mutant protein; n=17) had a low MnSOD expression as opposed to IDH1 immunonegative tumors (n=106), which had high expression of MnSOD (p=0.0307). Further, a statistically significant increase (p=0.010) in extent of MnSOD protein expression was also noted in GBM tumors following recurrence. Protein expression of MnSOD was associated with both poor OS (HR: 1.021; p=0.011) and early PFS (HR: 1.022; p=0.006) on univariate analysis. Multivariate Cox regression analysis as well as Kaplan-Meier survival analysis demonstrated similar poor prognostic association. Stratification of GBM cases based on p53 expression status revealed a strong association of MnSOD with OS (HR: 1.042; p=0.002) and PFS (HR: 1.044; p=0.001) in p53 positive tumor tissue samples. Similar findings were noted on multivariate Cox regression analysis and K-M survival analysis, while no such association was noted in tumor tissues staining negative for p53 expression.

Conclusions: Our study shows an increased expression of MnSOD in anaplastic astrocytoma and GBM compared to low grade astrocytoma and control brain. An increase in MnSOD expression following GBM tumor recurrence strengthens its putative role in tumor aggressiveness. Further, MnSOD emerges as a poor prognostic biomarker in p53 expressing GBMs, rendering this molecule as a potential therapeutic target in such patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2015.11.002DOI Listing

Publication Analysis

Top Keywords

protein expression
24
gbm patients
12
expression mnsod
12
dismutase mnsod
8
primary recurrent
8
gbm samples
8
non-tumor brain
8
brain tissues
8
mnsod protein
8
mnsod
7

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!