Mast cells (MCs) are strategically located at host/environment interfaces like skin, airways, and gastro-intestinal and uro-genital tracts. MCs also populate connective tissues in association with blood and lymphatic vessels and nerves. MCs are absent in avascular tissues, such as mineralized bone, cartilage, and cornea. MCs have various functions and different functional subsets of MCs are encountered in different tissues. However, we do not' know exactly what is the physiological function of MC. Most of these functions are not essential for life, as various MC-deficient strains of mice and rats seems to have normal life spans. In this review article, we have reported and discussed the literature data concerning the role of MCs in tissue morphogenesis, and in particular their role in the development of thymus, duodenum, and mammary gland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2015.11.022 | DOI Listing |
Lasers Med Sci
January 2025
The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway. METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.
View Article and Find Full Text PDFBiomater Transl
November 2024
Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China.
Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine.
View Article and Find Full Text PDFBiomater Transl
November 2024
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.
Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.
View Article and Find Full Text PDFMol Reprod Dev
January 2025
Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.
A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!